
Polkadot Protocol Spec

Table of contents:

Polkadot Protocol
Polkadot Host
📄 1. Overview
📄 2. States and Transitions
📄 3. Synchronization
📄 4. Networking
📄 5. Block Production
📄 6. Finality
📄 7. Light Clients
📄 8. Availability & Validity

1. Overview
1.1. Light Client
1.2. Full Node
1.3. Authoring Node
1.4. Relaying Node

2. States and Transitions
2.1. Introduction

2.1.1. Block Tree
2.2. State Replication

2.2.1. Block Format
2.3. Extrinsics

2.3.1. Preliminaries
2.3.2. Transactions
2.3.3. Inherents

2.4. State Storage Trie
2.4.1. Accessing System Storage
2.4.2. General Structure
2.4.3. Trie Structure
2.4.4. Merkle Proof
2.4.5. Managing Multiple Variants of State

2.5. Child Storage
2.5.1. Child Tries

2.6. Runtime Interactions
2.6.1. Interacting with the Runtime
2.6.2. Loading the Runtime Code
2.6.3. Code Executor

2.6.3.1. Memory Management
2.6.3.2. Sending Data to a Runtime Entrypoint
2.6.3.3. Receiving Data from a Runtime Entrypoint
2.6.3.4. Runtime Version Custom Section

3. Synchronization
3.1. Warp Sync
3.2. Fast Sync
3.3. Full Sync

3.3.1. Consensus Authority Set
3.3.2. Runtime-to-Consensus Engine Message

3.4. Importing and Validating Block
4. Networking

4.1. Introduction
4.2. External Documentation
4.3. Node Identities
4.4. Network bootstrap and discovery
4.5. Connection establishment
4.6. Encryption Layer
4.7. Protocols and Substreams
4.8. Network Messages

4.8.1. Discovering authorities
4.8.1.1. Requesting authority identifier and addresses
4.8.1.2. Publishing and discovering addresses

4.8.2. Announcing blocks
4.8.3. Requesting Blocks

4.8.4. Requesting States
4.8.5. Warp Sync
4.8.6. Transactions
4.8.7. GRANDPA Messages

4.8.7.1. GRANDPA Neighbor Messages
4.8.7.2. GRANDPA Catch-up Messages

4.8.8. GRANDPA BEEFY
5. Block Production

5.1. Introduction
5.1.1. Block Producer
5.1.2. Block Authoring Session Key Pair

5.2. Block Production Lottery
5.2.1. Primary Block Production Lottery

5.3. Slot Number Calculation
5.4. Production Algorithm
5.5. Epoch Randomness
5.6. Verifying Authorship Right
5.7. Block Building Process

6. Finality
6.1. Introduction
6.2. Initiating the GRANDPA State

6.2.1. Voter Set Changes
6.3. Rejoining the Same Voter Set
6.4. Voting Process in Round r{r}r
6.5. Forced Authority Set Changes
6.6. Block Finalization

6.6.1. Catching up
6.6.1.1. Sending the catch-up requests
6.6.1.2. Processing the catch-up requests
6.6.1.3. Processing catch-up responses

6.7. Bridge design (BEEFY)
6.7.1. Motivation
6.7.2. Protocol Overview
6.7.3. Preliminaries
6.7.4. Merkle Mountain Ranges
6.7.5. Voting on Payloads
6.7.6. Committing Witnesses
6.7.7. Requesting Signed Commitments
6.7.8. Consensus Mechanism
6.7.9. BEEFY Light Client
6.7.10. Subsampling Light Client
6.7.11. APK Proof based Light Clients

7. Light Clients
7.1. Requirements for Light Clients
7.2. Warp Sync for Light Clients
7.3. Runtime Environment for Light Clients
7.4. Light Client Messages

7.4.1. Request
7.4.2. Response
7.4.3. Remote Call Messages
7.4.4. Remote Read Messages
7.4.5. Remote Read Child Messages

7.5. Storage for Light Clients
8. Availability & Validity

8.1. Collations
8.2. Candidate Backing

8.2.1. Statements
8.2.2. Inclusion

8.3. Candidate Validation
8.3.1. Parachain Runtime
8.3.2. Runtime Compression

8.4. Availability
8.4.1. Availability Votes
8.4.2. Candidate Recovery

8.5. Approval Voting
8.5.1. Assignment Criteria
8.5.2. Tranches

8.6. Disputes
8.7. Network Messages

8.7.1. Notification Messges
8.7.2. Request & Response

8.7.2.1. Dispute Request
8.7.2.2. Dispute Response

8.8. Definitions
Polkadot Runtime
📄 9. Extrinsics
📄 10. Weights
📄 11. Consensus
📄 12. Metadata

9. Extrinsics
9.1. Introduction
9.2. Preliminaries
9.3. Extrinsics Body

9.3.1. Version 4
9.3.2. Mortality

9.3.2.1. Example
9.3.2.2. Encoding

10. Weights
10.1. Motivation
10.2. Assumptions

10.2.1. Limitations
10.3. Calculation of the weight function
10.4. Benchmarking

10.4.1. Primitive Types
10.4.1.1. Considerations

10.4.2. Parameters
10.4.2.1. Weight Refunds

10.4.3. Storage I/O cost
10.4.4. Environment

10.5. Practical examples
10.5.1. Practical Example #1: request_judgement

10.5.1.1. Analysis
10.5.1.2. Considerations
10.5.1.3. Benchmarking Framework

10.5.2. Practical Example #2: payout_stakers
10.5.2.1. Analysis
10.5.2.2. Considerations
10.5.2.3. Benchmarking Framework

10.5.3. Practical Example #3: transfer
10.5.3.1. Analysis
10.5.3.2. Considerations
10.5.3.3. Benchmarking Framework

10.5.4. Practical Example #4: withdraw_unbonded
10.5.4.1. Analysis
10.5.4.2. Parameters
10.5.4.3. Considerations
10.5.4.4. Benchmarking Framework

10.6. Fees
10.6.1. Fee Calculation
10.6.2. Definitions in Polkadot
10.6.3. Fee Multiplier

10.6.3.1. Update Multiplier
11. Consensus

11.1. BABE digest messages
12. Metadata

12.1. Structure
12.2. Pallet Metadata
12.3. Extrinsic Metadata

Implementation Guide
📄 FAQ

FAQ
Appendix A: Cryptography & Encoding

A.1. Cryptographic Algorithms
A.1.1. Hash Functions

A.1.1.1. BLAKE2
A.1.2. Randomness
A.1.3. VRF

A.1.3.1. Transcript
A.1.4. Cryptographic Keys

A.1.4.1. Holding and staking funds
A.1.4.2. Designating a proxy for voting

A.2. Auxiliary Encodings
A.2.1. Binary Enconding
A.2.2. SCALE Codec

A.2.2.1. Length and Compact Encoding
A.2.3. Hex Encoding

A.3. Chain Specification
A.3.1. Chain Spec
A.3.2. Chain Spec Extensions
A.3.3. Genesis State

A.4. Erasure Encoding
A.4.1. Erasure Encoding

Bibliography
Appendix B: Host API

B.1. Preliminaries
B.2. Storage

B.2.1. ext_storage_set
B.2.1.1. Version 1 - Prototype

B.2.2. ext_storage_get
B.2.2.1. Version 1 - Prototype

B.2.3. ext_storage_read
B.2.3.1. Version 1 - Prototype

B.2.4. ext_storage_clear
B.2.4.1. Version 1 - Prototype

B.2.5. ext_storage_exists
B.2.5.1. Version 1 - Prototype

B.2.6. ext_storage_clear_prefix
B.2.6.1. Version 1 - Prototype
B.2.6.2. Version 2 - Prototype

B.2.7. ext_storage_append
B.2.7.1. Version 1 - Prototype

B.2.8. ext_storage_root
B.2.8.1. Version 1 - Prototype
B.2.8.2. Version 2 - Prototype

B.2.9. ext_storage_changes_root
B.2.9.1. Version 1 - Prototype

B.2.10. ext_storage_next_key
B.2.10.1. Version 1 - Prototype

B.2.11. ext_storage_start_transaction
B.2.11.1. Version 1 - Prototype

B.2.12. ext_storage_rollback_transaction
B.2.12.1. Version 1 - Prototype

B.2.13. ext_storage_commit_transaction
B.2.13.1. Version 1 - Prototype

B.3. Child Storage
B.3.1. ext_default_child_storage_set

B.3.1.1. Version 1 - Prototype
B.3.2. ext_default_child_storage_get

B.3.2.1. Version 1 - Prototype
B.3.3. ext_default_child_storage_read

B.3.3.1. Version 1 - Prototype
B.3.4. ext_default_child_storage_clear

B.3.4.1. Version 1 - Prototype
B.3.5. ext_default_child_storage_storage_kill

B.3.5.1. Version 1 - Prototype
B.3.5.2. Version 2 - Prototype
B.3.5.3. Version 3 - Prototype

B.3.6. ext_default_child_storage_exists
B.3.6.1. Version 1 - Prototype

B.3.7. ext_default_child_storage_clear_prefix
B.3.7.1. Version 1 - Prototype
B.3.7.2. Version 2 - Prototype

B.3.8. ext_default_child_storage_root
B.3.8.1. Version 1 - Prototype
B.3.8.2. Version 2 - Prototype

B.3.9. ext_default_child_storage_next_key
B.3.9.1. Version 1 - Prototype

B.4. Crypto
B.4.1. ext_crypto_ed25519_public_keys

B.4.1.1. Version 1 - Prototype
B.4.2. ext_crypto_ed25519_generate

B.4.2.1. Version 1 - Prototype
B.4.3. ext_crypto_ed25519_sign

B.4.3.1. Version 1 - Prototype
B.4.4. ext_crypto_ed25519_verify

B.4.4.1. Version 1 - Prototype
B.4.5. ext_crypto_ed25519_batch_verify

B.4.5.1. Version 1
B.4.6. ext_crypto_sr25519_public_keys

B.4.6.1. Version 1 - Prototype
B.4.7. ext_crypto_sr25519_generate

B.4.7.1. Version 1 - Prototype
B.4.8. ext_crypto_sr25519_sign

B.4.8.1. Version 1 - Prototype
B.4.9. ext_crypto_sr25519_verify

B.4.9.1. Version 1 - Prototype
B.4.9.2. Version 2 - Prototype

B.4.10. ext_crypto_sr25519_batch_verify
B.4.10.1. Version 1

B.4.11. ext_crypto_ecdsa_public_keys
B.4.11.1. Version 1 - Prototype

B.4.12. ext_crypto_ecdsa_generate
B.4.12.1. Version 1 - Prototype

B.4.13. ext_crypto_ecdsa_sign
B.4.13.1. Version 1 - Prototype

B.4.14. ext_crypto_ecdsa_sign_prehashed
B.4.14.1. Version 1 - Prototype

B.4.15. ext_crypto_ecdsa_verify
B.4.15.1. Version 1 - Prototype
B.4.15.2. Version 2 - Prototype

B.4.16. ext_crypto_ecdsa_verify_prehashed
B.4.16.1. Version 1 - Prototype

B.4.17. ext_crypto_ecdsa_batch_verify
B.4.17.1. Version 1

B.4.18. ext_crypto_secp256k1_ecdsa_recover
B.4.18.1. Version 1 - Prototype
B.4.18.2. Version 2 - Prototype

B.4.19. ext_crypto_secp256k1_ecdsa_recover_compressed
B.4.19.1. Version 1 - Prototype
B.4.19.2. Version 2 - Prototype

B.4.20. ext_crypto_start_batch_verify
B.4.20.1. Version 1 - Prototype

B.4.21. ext_crypto_finish_batch_verify
B.4.21.1. Version 1 - Prototype

B.5. Hashing
B.5.1. ext_hashing_keccak_256

B.5.1.1. Version 1 - Prototype
B.5.2. ext_hashing_keccak_512

B.5.2.1. Version 1 - Prototype
B.5.3. ext_hashing_sha2_256

B.5.3.1. Version 1 - Prototype
B.5.4. ext_hashing_blake2_128

B.5.4.1. Version 1 - Prototype
B.5.5. ext_hashing_blake2_256

B.5.5.1. Version 1 - Prototype
B.5.6. ext_hashing_twox_64

B.5.6.1. Version 1 - Prototype
B.5.7. ext_hashing_twox_128

B.5.7.1. Version 1 - Prototype
B.5.8. ext_hashing_twox_256

B.5.8.1. Version 1 - Prototype
B.6. Offchain

B.6.1. ext_offchain_is_validator
B.6.1.1. Version 1 - Prototype

B.6.2. ext_offchain_submit_transaction
B.6.2.1. Version 1 - Prototype

B.6.3. ext_offchain_network_state
B.6.3.1. Version 1 - Prototype

B.6.4. ext_offchain_timestamp
B.6.4.1. Version 1 - Prototype

B.6.5. ext_offchain_sleep_until
B.6.5.1. Version 1 - Prototype

B.6.6. ext_offchain_random_seed
B.6.6.1. Version 1 - Prototype

B.6.7. ext_offchain_local_storage_set
B.6.7.1. Version 1 - Prototype

B.6.8. ext_offchain_local_storage_clear
B.6.8.1. Version 1 - Prototype

B.6.9. ext_offchain_local_storage_compare_and_set
B.6.9.1. Version 1 - Prototype

B.6.10. ext_offchain_local_storage_get
B.6.10.1. Version 1 - Prototype

B.6.11. ext_offchain_http_request_start
B.6.11.1. Version 1 - Prototype

B.6.12. ext_offchain_http_request_add_header
B.6.12.1. Version 1 - Prototype

B.6.13. ext_offchain_http_request_write_body
B.6.13.1. Version 1 - Prototype

B.6.14. ext_offchain_http_response_wait
B.6.14.1. Version 1 - Prototype

B.6.15. ext_offchain_http_response_headers
B.6.15.1. Version 1 - Prototype

B.6.16. ext_offchain_http_response_read_body
B.6.16.1. Version 1 - Prototype

B.7. Offchain Index
B.7.1. Offchain_index_set

B.7.1.1. Version 1 - Prototype
B.7.2. Offchain_index_clear

B.7.2.1. Version 1 - Prototype
B.8. Trie

B.8.1. ext_trie_blake2_256_root
B.8.1.1. Version 1 - Prototype
B.8.1.2. Version 2 - Prototype

B.8.2. ext_trie_blake2_256_ordered_root
B.8.2.1. Version 1 - Prototype
B.8.2.2. Version 2 - Prototype

B.8.3. ext_trie_keccak_256_root
B.8.3.1. Version 1 - Prototype
B.8.3.2. Version 2 - Prototype

B.8.4. ext_trie_keccak_256_ordered_root

B.8.4.1. Version 1 - Prototype
B.8.4.2. Version 2 - Prototype

B.8.5. ext_trie_blake2_256_verify_proof
B.8.5.1. Version 1 - Prototype
B.8.5.2. Version 2 - Prototype

B.8.6. ext_trie_keccak_256_verify_proof
B.8.6.1. Version 1 - Prototype
B.8.6.2. Version 2 - Prototype

B.9. Miscellaneous
B.9.1. ext_misc_print_num

B.9.1.1. Version 1 - Prototype
B.9.2. ext_misc_print_utf8

B.9.2.1. Version 1 - Prototype
B.9.3. ext_misc_print_hex

B.9.3.1. Version 1 - Prototype
B.9.4. ext_misc_runtime_version

B.9.4.1. Version 1 - Prototype
B.10. Allocator

B.10.1. ext_allocator_malloc
B.10.1.1. Version 1 - Prototype

B.10.2. ext_allocator_free
B.10.2.1. Version 1 - Prototype

B.11. Logging
B.11.1. ext_logging_log

B.11.1.1. Version 1 - Prototype
B.11.2. ext_logging_max_level

B.11.2.1. Version 1 - Prototype
B.12. Abort Handler

B.12.1. ext_panic_handler_abort_on_panic
B.12.1.1. Version 1 - Prototype

Appendix C: Runtime API
C.1. General Information

C.1.1. JSON-RPC API for external services
C.2. Runtime Constants

C.2.1. __heap_base
C.3. Runtime Call Convention
C.4. Module Core

C.4.1. Core_version
C.4.2. Core_execute_block
C.4.3. Core_initialize_block

C.5. Module Metadata
C.5.1. Metadata_metadata
C.5.2. Metadata_metadata_at_version
C.5.3. Metadata_metadata_versions

C.6. Module BlockBuilder
C.6.1. BlockBuilder_apply_extrinsic
C.6.2. BlockBuilder_finalize_block
C.6.3. BlockBuilder_inherent_extrinisics:
C.6.4. BlockBuilder_check_inherents

C.7. Module TaggedTransactionQueue
C.7.1. TaggedTransactionQueue_validate_transaction

C.8. Module OffchainWorkerApi
C.8.1. OffchainWorkerApi_offchain_worker

C.9. Module ParachainHost
C.9.1. ParachainHost_validators
C.9.2. ParachainHost_validator_groups
C.9.3. ParachainHost_availability_cores
C.9.4. ParachainHost_persisted_validation_data
C.9.5. ParachainHost_assumed_validation_data
C.9.6. ParachainHost_check_validation_outputs
C.9.7. ParachainHost_session_index_for_child
C.9.8. ParachainHost_validation_code
C.9.9. ParachainHost_validation_code_by_hash
C.9.10. ParachainHost_validation_code_hash

C.9.11. ParachainHost_candidate_pending_availability
C.9.12. ParachainHost_candidate_events
C.9.13. ParachainHost_session_info
C.9.14. ParachainHost_dmq_contents
C.9.15. ParachainHost_inbound_hrmp_channels_contents
C.9.16. ParachainHost_on_chain_votes
C.9.17. ParachainHost_pvfs_require_precheck
C.9.18. ParachainHost_submit_pvf_check_statement
C.9.19. ParachainHost_disputes
C.9.20. ParachainHost_executor_params

C.10. Module GrandpaApi
C.10.1. GrandpaApi_grandpa_authorities
C.10.2. GrandpaApi_current_set_id
C.10.3. GrandpaApi_submit_report_equivocation_unsigned_extrinsic
C.10.4. GrandpaApi_generate_key_ownership_proof

C.11. Module BabeApi
C.11.1. BabeApi_configuration
C.11.2. BabeApi_current_epoch_start
C.11.3. BabeApi_current_epoch
C.11.4. BabeApi_next_epoch
C.11.5. BabeApi_generate_key_ownership_proof
C.11.6. BabeApi_submit_report_equivocation_unsigned_extrinsic

C.12. Module AuthorityDiscoveryApi
C.12.1. AuthorityDiscoveryApi_authorities

C.13. Module SessionKeys
C.13.1. SessionKeys_generate_session_keys
C.13.2. SessionKeys_decode_session_keys

C.14. Module AccountNonceApi
C.14.1. AccountNonceApi_account_nonce

C.15. Module TransactionPaymentApi
C.15.1. TransactionPaymentApi_query_info
C.15.2. TransactionPaymentApi_query_fee_details

C.16. Module TransactionPaymentCallApi
C.16.1. TransactionPaymentCallApi_query_call_info
C.16.2. TransactionPaymentCallApi_query_call_fee_details

C.17. Module Nomination Pools
C.17.1. NominationPoolsApi_pending_rewards
C.17.2. NominationPoolsApi_points_to_balance
C.17.3. NominationPoolsApi_balance_to_points

Glossary

Polkadot Protocol

Formally, Polkadot is a replicated sharded state machine designed to resolve the scalability and interoperability among blockchains. In Polkadot
vocabulary, shards are called parachains and Polkadot relay chain is part of the protocol ensuring global consensus among all the parachains. The
Polkadot relay chain protocol, henceforward called Polkadot protocol, can itself be considered as a replicated state machine on its own. As such, the
protocol can be specified by identifying the state machine and the replication strategy.

From a more technical point of view, the Polkadot protocol has been divided into two parts, the Polkadot Runtime and the Polkadot Host. The Runtime
comprises the state transition logic for the Polkadot protocol and is designed and be upgradable via the consensus engine without requiring hard forks
of the blockchain. The Polkadot Host provides the necessary functionality for the Runtime to execute its state transition logic, such as an execution
environment, I/O, consensus and network interoperability between parachains. The Polkadot Host is planned to be stable and mostly static for the
lifetime duration of the Polkadot protocol, the goal being that most changes to the protocol are primarily conducted by applying Runtime updates and
not having to coordinate with network participants on manual software updates.

CAUTION

This specification is Work-In-Progress and any content, structure, design and/or hyper/anchor-link is subject to change.

https://spec.polkadot.network/part-polkadot-runtime
https://spec.polkadot.network/part-polkadot-host

Polkadot Host
With the current document, we aim to specify the Polkadot Host part of the Polkadot protocol as a replicated state machine. After defining the different
types of hosts in Chapter 1, we proceed to specify the representation of a valid state of the Protocol in Chapter 2. We also identify the protocol states by
explaining the Polkadot state transition and discussing the detail based on which the Polkadot Host interacts with the state transition function, i.e.,
Runtime, in the same chapter. Following, we specify the input messages triggering the state transition and the system behavior. In Chapter 4, we
specify the communication protocols and network messages required for the Polkadot Host to communicate with other nodes in the network, such as
exchanging blocks and consensus messages. In Chapter 5 and Chapter 6, we specify the consensus protocol, which is responsible for keeping all the
replicas in the same state. Finally, the initial state of the machine is identified and discussed in Section A.3.3.. A Polkadot Host implementation that
conforms with this part of the specification should successfully be able to sync its states with the Polkadot network.

📄 1. Overview

The Polkadot Protocol differentiates between different classes of Polkadot Hosts. Each class differs in its trust roots and how active or passively they interact with the network.

📄 2. States and Transitions

2.1. Introduction

📄 3. Synchronization

Many applications that interact with the Polkadot network, to some extent, must be able to retrieve certain information about the network. Depending on the utility, this includes v…

📄 4. Networking

This chapter, in its current form, is incomplete and considered work in progress. Authors appreciate receiving requests for clarification or any reports regarding deviation from th…

📄 5. Block Production

5.1. Introduction

📄 6. Finality

6.1. Introduction

📄 7. Light Clients

7.1. Requirements for Light Clients

https://spec.polkadot.network/chap-overview
https://spec.polkadot.network/chap-state
https://spec.polkadot.network/chap-networking
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-overview
https://spec.polkadot.network/chap-state
https://spec.polkadot.network/chap-sync
https://spec.polkadot.network/chap-networking
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/sect-lightclient
https://spec.polkadot.network/chapter-anv

📄 8. Availability & Validity

Polkadot serves as a replicated shared-state machine designed to resolve scalability issues and interoperability among blockchains. The validators of Polkadot execute transact…

https://spec.polkadot.network/chapter-anv

1. Overview
The Polkadot Protocol differentiates between different classes of Polkadot Hosts. Each class differs in its trust roots and how active or passively they
interact with the network.

1.1. Light Client

The light client is a mostly passive participant in the protocol. Light clients are designed to work in resource-constrained environments like browsers,
mobile devices, or even on-chain. Its main objective is to follow the chain, make queries to the full node on specific information on the recent state of the
blockchain, and add extrinsics (transactions). It does not maintain the full state but rather queries the full node on the latest finalized state and verifies
the authenticity of the responses trustlessly. Details of specifications focused on Light Clients can be found in Chapter 7.

1.2. Full Node

While the full node is still a mostly passive participant of the protocol, they follow the chain by receiving and verifying every block in the chain. It
maintains a full state of the blockchain by executing the extrinsics in blocks. Their role in the consensus mechanism is limited to following the chain and
not producing the blocks.

Functional Requirements:

i. The node must populate the state storage with the official genesis state, elaborated further in Section A.3.3..

ii. The node should maintain a set of around 50 active peers at any time. New peers can be found using the discovery protocols (Section 4.4.)

iii. The node should open and maintain the various required streams (Section 4.7.) with each of its active peers.

iv. Furthermore, the node should send block requests (Section 4.8.3.) to these peers to receive all blocks in the chain and execute each of them.

v. The node should exchange neighbor packets (Section 4.8.7.1.).

1.3. Authoring Node

The authoring node covers all the features of the full node, but instead of just passively following the protocol, it is an active participant, producing
blocks and voting in Grandpa.

Functional Requirements:

i. Verify that the Host’s session key is included in the current Epoch’s authority set (Section 3.3.1.).

ii. Run the BABE lottery (Chapter 5) and wait for the next assigned slot in order to produce a block.

iii. Gossip any produced blocks to all connected peers (Section 4.8.2.).

iv. Run the catch-up protocol (Section 6.6.1.) to make sure that the node is participating in the current round and not a past round.

v. Run the GRANDPA rounds protocol (Chapter 6).

1.4. Relaying Node

The relaying node covers all the features of the authoring node but also participants in the availability and validity process to process new parachain
blocks as described in Chapter 8.

https://spec.polkadot.network/sect-lightclient
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-networking#sect-network-bootstrap
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://spec.polkadot.network/chap-networking#sect-msg-block-request
https://spec.polkadot.network/chap-networking#sect-grandpa-neighbor-msg
https://spec.polkadot.network/chap-sync#sect-authority-set
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/chap-networking#sect-msg-block-announce
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/chapter-anv

2. States and Transitions

2.1. Introduction

Definition 1. Discrete State Machine (DSM)

Definition 2. Path Graph

Definition 3. Blockchain

2.1.1. Block Tree

In the course of formation of a (distributed) blockchain, it is possible that the chain forks into multiple subchains in various block positions. We refer to
this structure as a block tree:

Definition 4. Block

A Discrete State Machine (DSM) is a state transition system that admits a starting state and whose set of states and set of transitions are
countable. Formally, it is a tuple of

where

 is the countable set of all possible inputs.

 is a countable set of all possible states.

 is the initial state.

 is the state-transition function, known as Runtime in the Polkadot vocabulary, such that

(Σ,S, s , δ)0

Σ

S

s ∈0 S

δ

δ : S × Σ → S

A path graph or a path of nodes, formally referred to as , is a tree with two nodes of vertex degree 1 and the other n-2 nodes of vertex
degree 2. Therefore, can be represented by sequences of where for is the edge which connect

 and .

n P n

P n v , … , v (1 n) e =i v , v (i i+1) 1 ≤ i ≤ n − 1
v i v i+1

A blockchain is a directed path graph. Each node of the graph is called Block and indicated by . The unique sink of is called Genesis
Block, and the source is called the of . For any vertex where we say is the parent of , which is the child of

, respectively. We indicate that by:

The parent refers to the child by its hash value (Definition 10), making the path graph tamper-proof since any modifications to the child would result
in its hash value being changed.

C B C

Head C B ,B (1 2) B →1 B 2 B 2 B 1

B 2

B :=2 P (B)1

INFO

The term "blockchain" can also be used as a way to refer to the network or system that interacts or maintains the directed path graph.

https://en.wikipedia.org/wiki/Directed_graph
https://spec.polkadot.network/chap-state#defn-block-header

When a block in the block tree gets finalized, there is an opportunity to prune the block tree to free up resources into branches of blocks that do not
contain all of the finalized blocks or those that can never be finalized in the blockchain (Chapter 6).

Definition 5. Pruned Block Tree

Definition 6 gives the means to highlight various branches of the block tree.

Definition 6. Subchain

Definition 7. Longest Chain

Definition 8. Longest Path

Because every block in the blockchain contains a reference to its parent, it is easy to see that the block tree is de facto a tree. A block tree naturally
imposes partial order relationships on the blocks as follows:

Definition 9. Descendant and Ancestor

2.2. State Replication

Polkadot nodes replicate each other’s states by syncing the histories of the extrinsics. This, however, is only practical if a large set of transactions are
batched and synced at the same time. The structure in which the transactions are journaled and propagated is known as a block of extrinsics (Section
2.2.1.). Like any other replicated state machine, state inconsistencies can occur between Polkadot replicas. Section 2.4.5. gives an overview of how a
Polkadot Host node manages multiple variants of the state.

The block tree of a blockchain, denoted by is the union of all different versions of the blockchain observed by the Polkadot Host such that
every block is a node in the graph and is connected to if is a parent of .

BT

B 1 B 2 B 1 B 2

By Pruned Block Tree, denoted by , we refer to a subtree of the block tree obtained by eliminating all branches which do not contain the
most recent finalized blocks (Definition 94). By pruning, we refer to the procedure of . When there is no risk of ambiguity and it is

safe to prune BT, we use to refer to .

PBT
BT ← PBT

BT PBT

Let be the root of the block tree and be one of its nodes. By , we refer to the path graph from to in . Conversely, for a
chain , we define the head of to be , formally noted as . We define , the length of as a path graph.

If is another node on , then by we refer to the subgraph of path graph which contains and ends
at and by we refer to its length.

Accordingly, is the set of all subchains of rooted at . The set of all chains of , is denoted by or simply ,
for the sake of brevity.

G B Chain B() G B BT
C = Chain B() C B B = C C∣ ∣ C

B′ Chain B() SubChain B ,B(′) Chain B() B

B′ SubChain B ,B∣ (′)∣

C BTB′ () BT B′ BT C BTG() C BT() C

We define the following complete order over as follows. For chains we have that if either or .

If we say if and only if the block arrival time (Definition 72) of is less than the block arrival time of , from the
subjective perspective of the Host. We define the to be the maximum chain given by this order.

C C ,C ∈1 2 C C >1 C 2 C >∣ 1∣ C ∣ 2∣ C =∣ 1∣ C ∣ 2∣

C =∣ 1∣ C ∣ 2∣ C >1 C 2 C1 C2

Longest-Chain BT()

 returns the path graph of which is the longest among all paths in and has the earliest block arrival time (Definition
72). returns the head of chain.
Longest-Path BT() BT BT

Deepest-Leaf BT() Longest-Path BT()

We say is descendant of , formally noted as , if . Respectively, we say that is an ancestor of , formally
noted as , if .

B B′ B > B′ B > B ∈(∣ ∣ ∣ ′∣) C B′ B

B < B′ B < B ∈(∣ ∣ ∣ ′∣) C

https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/chap-state#defn-chain-subchain
https://spec.polkadot.network/chap-state#sect-block-format
https://spec.polkadot.network/chap-state#sect-block-format
https://spec.polkadot.network/chap-state#sect-managing-multiple-states
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-block-production#defn-block-time
https://spec.polkadot.network/sect-block-production#defn-block-time
https://spec.polkadot.network/sect-block-production#defn-block-time

2.2.1. Block Format

A Polkadot block consists a block header (Definition 10) and a block body (Definition 13). The block body, in turn, is made up out of extrinsics , which
represent the generalization of the concept of transactions. Extrinsics can contain any set of external data the underlying chain wishes to validate and
track.

Image 1. Block

Block

pos size type id
0 ... BlockHeader header
... ... BlockBody body

BlockHeader

BlockBody

Definition 10. Block Header

Image 2. Block Header

BlockHeader

pos size type id
0 32 parent_hash

32 ... Scale::CompactInt number
... 32 state_root
... 32 extrinsic_root
... ... Scale::CompactInt num_digests
... ... Digest digests

repeat num_digests.value times
Digest

Definition 11. Header Digest

The header of block B, , is a 5-tuple containing the following elements:

parent_hash: formally indicated as , is the 32-byte Blake2b hash (Section A.1.1.1.) of the SCALE encoded parent block header (Definition
12).

number: formally indicated as , is an integer, which represents the index of the current block in the chain. It is equal to the number of the
ancestor blocks. The genesis state has the number 0.

state_root: formally indicated as , is the root of the Merkle trie, whose leaves implement the storage for the system.

extrinsics_root: is the field which is reserved for the Runtime to validate the integrity of the extrinsics composing the block body. For
example, it can hold the root hash of the Merkle trie which stores an ordered list of the extrinsics being validated in this block. The
extrinsics_root is set by the runtime and its value is opaque to the Polkadot Host. This element is formally referred to as .

digest: this field is used to store any chain-specific auxiliary data, which could help the light clients interact with the block without the need of
accessing the full storage as well as consensus-related data including the block signature. This field is indicated as (Definition 11).

H Bh()

H p

H i

H r

H e

H d

The header digest of block formally referred to by is an array of digest items ’s, known as digest items of varying data type
(Definition 198) such that:

where each digest item can hold one of the following type identifiers:

B H Bd() H d
i

H (B) :=d H , ...,H d
1

d
n

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body
https://spec.polkadot.network/chap-state#img-block-header
https://spec.polkadot.network/chap-state#img-block-body
https://spec.polkadot.network/chap-state#img-digest
https://spec.polkadot.network/id-cryptography-encoding#sect-blake2
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Image 3. Digest

Digest

Digest::PreRuntime

Digest::PostRuntime

Digest::Seal

Digest::Empty

pos size type id
0 1 u1→TypeId type
1 ... switch (type) value

case type
:type_id_pre_runtime PreRuntime
:type_id_post_runtime PostRuntime

:type_id_seal Seal
:type_id_runtime_updated Empty

pos size type id
0 4 str(ASCII) engine
4 ... Scale::Bytes payload

pos size type id
0 4 str(ASCII) engine
4 ... Scale::Bytes payload

pos size type id
0 4 str(ASCII) engine
4 ... Scale::Bytes payload

pos size type id

Definition 12. Header Hash

where

 is a 4-byte ASCII encoded consensus engine identifier

 is a SCALE-encoded byte array containing the message payload

 Consensus Message, contains scale-encoded message from the Runtime to the consensus engine. The receiving engine is determined
by the id identifier:

id = BABE: a message to BABE engine (Definition 63)

id = FRNK: a message to GRANDPA engine (Definition 91)

id = BEEF: a message to BEEFY engine (Definition 104)

 Seal, is produced by the consensus engine and proves the authorship of the block producer. The engine used for this is provided through id
(at the moment, BABE), while contains the scale-encoded signature (Definition 75) of the block producer. In particular, the Seal digest item must
be the last item in the digest array and must be stripped off by the Polkadot Host before the block is submitted to any Runtime function, including
for validation. The Seal must be added back to the digest afterward.

 Pre-Runtime digest, contains messages from the consensus engines to the runtime. Currently only used by BABE to pass the scale
encoded BABE Header (Definition 74) in with id = BABE .

 Runtime Environment Updated digest, indicates that changes regarding the Runtime code or heap pages (Section 2.6.3.1.) occurred. No
additional data is provided.

H =d
i

⎩

⎨

⎧4 → (t, id,m)
5 → (t, id,m)
6 → (t, id,m)
8 → (t)

id

m

t = 4 m

t = 5
m

t = 6
m

t = 8

The block header hash of block , , is the hash of the header of block encoded by simple codec:B H Bh() B

https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe
https://spec.polkadot.network/sect-finality#defn-consensus-message-grandpa
https://spec.polkadot.network/sect-finality#defn-consensus-message-beefy
https://spec.polkadot.network/sect-block-production#defn-block-signature
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/chap-state#sect-memory-management

Definition 13. Block Body

2.3. Extrinsics

The block body consists of an array of extrinsics. In a broad sense, extrinsics are data from outside of the state which can trigger state transitions. This
section describes extrinsics and their inclusion into blocks.

2.3.1. Preliminaries

The extrinsics are divided into two main categories defined as follows:

Transaction extrinsics are extrinsics which are signed using either of the key types (Section A.1.4.) and broadcasted between the nodes. Inherent
extrinsics are unsigned extrinsics that are generated by Polkadot Host and only included in the blocks produced by the node itself. They are
broadcasted as part of the produced blocks rather than being gossiped as individual extrinsics.

The Polkadot Host does not specify or limit the internals of each extrinsics and those are defined and dealt with by the Runtime (Definition 1). From the
Polkadot Host point of view, each extrinsics is simply a SCALE-encoded blob (Section A.2.2.).

2.3.2. Transactions

Transaction are submitted and exchanged through Transactions network messages (Section 4.8.6.). Upon receiving a Transactions message, the
Polkadot Host decodes the SCALE-encoded blob and splits it into individually SCALE-encoded transactions.

Alternatively, transactions can be submitted to the host by off-chain worker through the Host API (Section B.6.2.).

Any new transaction should be submitted to the Runtime (Section C.7.1.). This will allow the Polkadot Host to check the validity of the received
transaction against the current state and if it should be gossiped to other peers. If it considers the submitted transaction as valid, the Polkadot Host
should store it for inclusion in future blocks. The whole process of handling new transactions is described in more detail by Validate-Transactions-and-
Store.

Additionally, valid transactions that are supposed to be gossiped are propagated to connected peers of the Polkadot Host. While doing so the Polkadot
Host should keep track of peers already aware of each transaction. This includes peers which have already gossiped the transaction to the node as well
as those to whom the transaction has already been sent. This behavior is mandated to avoid resending duplicates and unnecessarily overloading the
network. To that aim, the Polkadot Host should keep a transaction pool and a transaction queue defined as follows:

Definition 14. Transaction Queue

H B =h() Blake2b Enc Head B(SC(()))

The block body consists of a sequence of extrinsics, each encoded as a byte array. The content of an extrinsic is completely opaque to the
Polkadot Host. As such, from the point of the Polkadot Host, and is simply a SCALE encoded array of byte arrays. The body of Block
represented as is defined to be:

Where each is a SCALE encoded extrinsic.

Image 4. Block Body

BlockBody

BlockBody::Transaction
pos size type id
0 ... Scale::CompactInt num_transactions
... ... Transaction transactions

repeat num_transactions.value times

pos size type id
0 ... Scale::CompactInt len_data
... len_data.value data

B

Body B()

Body(B) := Enc (E , ...,E)SC 1 n

E ∈i B

https://spec.polkadot.network/id-cryptography-encoding#sect-cryptographic-keys
https://spec.polkadot.network/chap-state#defn-state-machine
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-host-api#sect-ext-offchain-submit-transaction
https://spec.polkadot.network/chap-runtime-api#sect-rte-validate-transaction
https://spec.polkadot.network/chap-state#algo-validate-transactions
https://spec.polkadot.network/chap-state#algo-validate-transactions

Furthermore, Validate-Transactions-and-Store updates the transaction pool and the transaction queue according to the received message:

Algorithm 1. Validate Transactions and Store

Algorithm 2. Maintain Transaction Pool

The Transaction Queue of a block producer node, formally referred to as is a data structure which stores the transactions ready to be
included in a block sorted according to their priorities (Section 4.8.6.). The Transaction Pool, formally referred to as , is a hash table in which
the Polkadot Host keeps the list of all valid transactions not in the transaction queue.

TQ

TP

Algorithm Validate-Transactions-and-Store

for all do
 HEAD(LONGEST-CHAIN())

 CALL-RUNTIME-ENTRY()
if VALID() then

if REQUIRES() PROVIDED-TAGS() then
INSERT-AT(REQUIRES() PRIORITY())

else
ADD-TO()

end if
MAINTAIN-TRANSACTION-POOL()
if SHOULDPROPAGATE() then

PROPAGATE()
end if

end if
end for

where

 is the transaction message (offchain transactions?)

 decodes the SCALE encoded message.

 is defined in Definition 7.

 is a Runtime entrypoint specified in Section C.7.1. and ,
 and refer to the corresponding fields in the tuple returned by the entrypoint when it deems that is valid.

 is the list of tags that transaction provides. The Polkadot Host needs to keep track of tags that transaction provides

as well as requires after validating it.

 places into approperietly such that the transactions providing the tags which
requires or have higher priority than are ahead of .

 is described in Maintain-Transaction-Pool.

 indicates whether the transaction should be propagated based on the Propagate field in the ValidTransaction type
as defined in Definition 238, which is returned by .

 sends to all connected peers of the Polkadot Host who are not already aware of .

1: L ← Dec (M)SC T

2: {T ∈ L ∣ T ∈/ TQ ∣ T ∈/ TP}
3: B ←d BT

4: N ← H (B)n d

5: R ← TaggedTransactionQueue_validate_transaction,N ,T
6: R

7: R ⊂ ⋃∀T∈(TQ ∪ B ∣∃i)i ∣d>i
T

8: TQ,T , R , R

9:

10: TP ,T
11:

12:

13: R

14: T

15:

16:

17:

M T

Dec SC

Longest-Chain

TaggedTransactionQueue_validate_transaction Requires R()
Priority R() Propagate R() T

Provided-Tags T() T T

Insert-At TQ,T , Requires R , Priority R(() ()) T TQ T

T T

Maintain-Transaction-Pool

ShouldPropagate
TaggedTransactionQueue_validate_transaction

Propagate T() T T

Algorithm Maintain-Transaction-Pool

Scan the pool for ready transactions
Move them to the transaction queue
Drop invalid transactions

1:

2:

3:

INFO

https://spec.polkadot.network/chap-state#algo-validate-transactions
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-state#defn-longest-chain
https://spec.polkadot.network/chap-runtime-api#sect-rte-validate-transaction
https://spec.polkadot.network/chap-state#algo-maintain-transaction-pool
https://spec.polkadot.network/chap-runtime-api#defn-valid-transaction

2.3.3. Inherents

Inherents are unsigned extrinsics inserted into a block by the block author and as a result are not stored in the transaction pool or gossiped across the
network. Instead, they are generated by the Polkadot Host by passing the required inherent data, as listed in Table 1, to the Runtime method

 (Section C.6.3.). Then the returned extrinsics should be included in the current block as explained in Build-
Block.

Table 1. Inherent Data

Identifier Value Type Description

timstap0 Unsigned 64-bit integer Unix epoch time (Definition 191)

babeslot Unsigned 64-bit integer The babe slot (DEPRECATED) (Definition 59)

parachn0 Parachain inherent data (Definition 113) Parachain candidate inclusion (Section 8.2.2.)

Definition 15. Inherent Data

2.4. State Storage Trie

For storing the state of the system, Polkadot Host implements a hash table storage where the keys are used to access each data entry. There is no
assumption on the size of the key or on the size of the data stored under them, besides the fact that they are byte arrays with specific upper limits on
their length. The limit is imposed by the encoding algorithms to store the key and the value in the storage trie (Section A.2.2.1.).

2.4.1. Accessing System Storage

The Polkadot Host implements various functions to facilitate access to the system storage for the Runtime (Section 2.6.1.). Here we formalize the
access to the storage when it is being directly accessed by the Polkadot Host (in contrast to Polkadot runtime).

Definition 16. Stored Value

2.4.2. General Structure

In order to ensure the integrity of the state of the system, the stored data needs to be re-arranged and hashed in a radix tree, which hereafter we refer
to as the State Trie or just Trie. This rearrangement is necessary to be able to compute the Merkle hash of the whole or part of the state storage,
consistently and efficiently at any given time.

This has not been defined yet.

BlockBuilder_inherent_extrinsics

Inherent-Data is a hashtable (Definition 202), an array of key-value pairs consisting of the inherent 8-byte identifier and its value, representing
the totality of inherent extrinsics included in each block. The entries of this hash table which are listed in Table 1 are collected or generated by the
Polkadot Host and then handed to the Runtime for inclusion (Build-Block).

The function retrieves the value stored under a specific key in the state storage and is formally defined as:

where and are respectively the set of all keys and values stored in the state storage. can be an empty value.

StoredValue

StoredValue: K → V

k → {
v if (k, v) exists in state storage
ϕ otherwise

K ⊂ B V ⊂ B V

https://spec.polkadot.network/chap-state#tabl-inherent-data
https://spec.polkadot.network/chap-runtime-api#defn-rt-builder-inherent-extrinsics
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/id-cryptography-encoding#sect-sc-length-and-compact-encoding
https://spec.polkadot.network/chap-state#sect-entrypoints-into-runtime
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/chap-state#tabl-inherent-data
https://spec.polkadot.network/sect-block-production#algo-build-block

The trie is used to compute the Merkle root (Section 2.4.4.) of the state, (Definition 10), whose purpose is to authenticate the validity of the state
database. Thus, the Polkadot Host follows a rigorous encoding algorithm to compute the values stored in the trie nodes to ensure that the computed
Merkle hash, , matches across the Polkadot Host implementations.

The trie is a radix-16 tree (Definition 17). Each key value identifies a unique node in the tree. However, a node in a tree might or might not be
associated with a key in the storage.

Definition 17. Radix-r Tree

When traversing the trie to a specific node, its key can be reconstructed by concatenating the subsequences of the keys which are stored either
explicitly in the nodes on the path or implicitly in their position as a child of their parent.

To identify the node corresponding to a key value, , first, we need to encode in a way consistent with the trie structure. Because each node in the trie
has at most 16 children, we represent the key as a sequence of 4-bit nibbles:

Definition 18. Key Encode

By looking at as a sequence of nibbles, one can walk the radix tree to reach the node identifying the storage value of .

2.4.3. Trie Structure

In this subsection, we specify the structure of the nodes in the trie as well as the trie structure:

Definition 19. Set of Nodes

Definition 20. State Trie

H r

H r

A Radix-r tree is a variant of a trie in which:

Every node has at most children where for some ;

Each node that is the only child of a parent, which does not represent a valid key is merged with its parent.

As a result, in a radix tree, any path whose interior vertices all have only one child and does not represent a valid key in the data set, is
compressed into a single edge. This improves space efficiency when the key space is sparse.

r r = 2x x

k k

For the purpose of labeling the branches of the trie, the key is encoded to using functions:

such that:

where is the set of all nibbles of 4-bit arrays and and are 4-bit nibbles, which are the big endian representations of :

where is the remainder and is the integer division operators.

k k enc KeyEncode

k =enc k , … , k =(enc 1 enc 2n) KeyEncode k()

KeyEncode : B → Nibbles4

k ⟼ k , … , k (enc 1 enc 2n)

b , … , b ⟼(1 n) b , b , b , b , … , b , b (1
1

1
2

2
1

2
2

n
1

n
2)

Nibble4 b i
1 b i

2 b i

k =enc i
b , b =(i

1
i
2) b ÷ 16, b mod16(i i)

mod ÷

k enc k

We refer to the set of the nodes of Polkadot state trie by . By to refer to an individual node in the trie.N N ∈ N

The state trie is a radix-16 tree (Definition 17). Each node in the trie is identified with a unique key such that:

 is the shared prefix of the key of all the descendants of in the trie.

k N

k N N

https://spec.polkadot.network/chap-state#sect-merkl-proof
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-radix-tree
https://spec.polkadot.network/chap-state#defn-radix-tree

Definition 21. Branch

For each node, part of is built while the trie is traversed from the root to and another part of is stored in (Definition 22).

Definition 22. Aggregated Prefix Key

Part of is explicitly stored in ’s ancestors. Additionally, for each ancestor, a single nibble is implicitly derived while traversing from the ancestor

to its child included in the traversal path using the function (Definition 23).

Definition 23. Index

Algorithm 3. Aggregate-Key

and at least one of the following statements holds:

 corresponds to an existing entry in the State Storage.

 has more than one child.

Conversely, if is an entry in the state trie then there is a node such that .

k , v(N)

N

k, v() N ∈ N k =N k

A branch node is a node which has one child or more. A branch node can have at most 16 children. A leaf node is a
childless node. Accordingly:

N ∈b N b N ∈l N l

N =b N ∈ N ∣N is a branch node{ b b }

N =l N ∈ N ∣N is a leaf node{ l l }

k N N k N N

For any , its key is divided into an aggregated prefix key, , aggregated by Aggregate-Key and a partial key, of length
 in nibbles such that:

where is a prefix subsequence of ; is the length of in nibbles and so we have:

N ∈ N k N pk N
Agr pk N

0 ≤ l pk N

pk =N k , … , k (enc i enc i+l pk N
)

pk N
Agr k N i pk N

Agr

KeyEncode k =(N) pk ∣∣pk =N
Agr

N k , … , k , k , k (enc 1 enc i−1 enc i enc i+l pk N

)

pk N
Agr

N

Index N

For and child of , we define function as:

such that

N ∈ N b N c N Index N

Index :N {N ∈C cc(N) ∣ N is a child of N} →c Nibbles 1
4

N →c i

k =N c
k ∣ i∣ pk N ∣ ∣ N c

Algorithm Aggregate-Key

Require: TRIEROOT

for all do

end for

return

P =N : (= N , … ,N =1 j N)
1: pk ←N

Agr
ϕ

2: i ← 1
3: N ∈i P N

4: pk ←N
Agr

pk ∣∣pk ∣∣Index (N)N
Agr

N i N i i+1

5:

6: pk ←N
Agr pk ∣∣pk N

Agr
N

7: pk N
Agr

https://spec.polkadot.network/chap-state#defn-node-key
https://spec.polkadot.network/chap-state#defn-index-function
https://spec.polkadot.network/chap-state#algo-aggregate-key

Definition 24. Node Value

Definition 25. Node Header

2.4.4. Merkle Proof

To prove the consistency of the state storage across the network and its modifications both efficiently and effectively, the trie implements a Merkle tree
structure. The hash value corresponding to each node needs to be computed rigorously to make the inter-implementation data integrity possible.

The Merkle value of each node should depend on the Merkle value of all its children as well as on its corresponding data in the state storage. This
recursive dependency is encompassed into the subvalue part of the node value, which recursively depends on the Merkle value of its children.
Additionally, as Section 2.5.1. clarifies, the Merkle proof of each child trie must be updated first before the final Polkadot state root can be calculated.

We use the auxiliary function introduced in Definition 26 to encode and decode the information stored in a branch node.

Definition 26. Children Bitmap

Assuming that is the path (Definition 2) from the trie root to node , Aggregate-Key rigorously demonstrates how to build while

traversing .
P N N pk N

Agr

P N

A node stores the node value, , which consists of the following concatenated data:

Formally noted as:

where

 is the node header from Definition 25

 is the partial key from Definition 22

 is hex encoding (Definition 209)

 is the node subvalue from Definition 27

N ∈ N v N

Node Header Partial Key Node Subvalue∣∣ ∣∣

v =N Head Enc pk sv N ∣∣ HE(N)∣∣ N

Head N

pk N

Enc HE

sv N

The node header, consisting of bytes, , specifies the node variant and the partial key length (Definition 22). Both pieces of
information can be represented in bits within a single byte, , where the amount of bits of the variant, , and the bits of the partial key length,

varies.

If the value of is equal to the maximum possible value the bits can hold, such as 63 () in case of the variant, then the value of the next
8 bits () are added the length. This process is repeated for every where . Any value smaller than the maximum possible

value of implies that the next value of should not be added to the length. The hashed subvalue for variants and is described
in Definition 28.

Formally, the length of the partial key, , is defined as:

as long as , and , where is the maximum possible value that can hold.

≥ 1 N …N 1 n

N 1 v p l

v =

⎩

⎨

⎧ 01
10
11

001
0001

00000000
00000001

Leaf
Branch Node with k ∈ KN /
Branch Node with k ∈ KN

Leaf containing a hashed subvalue
Branch containing a hashed subvalue

Empty
Reserved for compact encoding

p = 2l
6

p = 2l
6

p = 2l
6

p = 2l
5

p = 2l
4

p = 0l

p l 2 −6 1 01
N 2 N n N =n 2 −8 1
N n N n+1 001 0001

pk N
l

pk =N
l p +l N +n N +n+x … + N n+x+y

p =l m N =n+x 2 −8 1 N <n+x+y 2 −8 1 m p l

https://spec.polkadot.network/chap-state#sect-child-trie-structure
https://spec.polkadot.network/chap-state#defn-children-bitmap
https://spec.polkadot.network/chap-state#defn-path-graph
https://spec.polkadot.network/chap-state#algo-aggregate-key
https://spec.polkadot.network/chap-state#defn-node-header
https://spec.polkadot.network/chap-state#defn-node-key
https://spec.polkadot.network/id-cryptography-encoding#defn-hex-encoding
https://spec.polkadot.network/chap-state#defn-node-subvalue
https://spec.polkadot.network/chap-state#defn-node-key
https://spec.polkadot.network/chap-state#defn-hashed-subvalue

Definition 27. Subvalue

Definition 28. Hashed Subvalue

Definition 29. Merkle Value

Suppose and is a child of . We define bit if and only if has a child with index , therefore we define
ChildrenBitmap functions as follows:

where

N ,N ∈b c N N c N b b :=i 1 N b i

ChildrenBitmap:

N →b B 2

N →b b , … , b , b , … , b (15 8 7 0)2

b =i {
1
0

∃N ∈ N : k = k i pk c N c N b
∣∣ ∣∣ N c

otherwise

For a given node , the subvalue of , formally referred to as , is determined as follows:

where the first variant is a leaf node and the second variant is a branch node.

 with are the children nodes of the branch node .

 is defined in Section A.2.2..

, where can be empty, is defined in Definition 16.

 is defined in Definition 29.

 is defined in Definition 26.

The trie deviates from a traditional Merkle tree in that the node value (Definition 24), , is presented instead of its hash if it occupies less space

than its hash.

N N sv N

sv =N {
StoredValue SC

Enc ChildrenBitmap N StoredValue Enc H N , … , Enc H N SC(()∣∣ SC∣∣ SC((C 1)) SC((C n
)))

StoredValue =SC {
Enc StoredValue k SC((N))

ϕ

if StoredValue k = v(N)
if StoredValue k = ϕ(N)

N …N C 1 C n
n ≤ 16 N

Enc SC

StoredValue v

H

ChildrenBitmap N()

v N

To increase performance, a Merkle proof can be generated by inserting the hash of a value into the trie rather than the value itself (which can be
quite large). If Merkle proof computation with node hashing is explicitly executed via the Host API (Section B.2.8.2.), then any value larger than 32
bytes is hashed, resulting in that hash being used as the subvalue (Definition 27) under the corresponding key. The node header must specify the
variant and respectively for leaves containing a hash as their subvalue and for branches containing a hash as their subvalue (Definition
25).

001 0001

For a given node , the Merkle value of , denoted by is defined as follows:

Where is the node value of (Definition 24) and is the root of the trie. The Merkle hash of the trie is defined to be .

N N H N()

H : B → U B i→0
32

i

H N :() {
v N

Blake2b v (N)
v < 32 and N = R∣∣ N ∣∣
v ≥ 32 or N = R∣∣ N ∣∣

v N N R H R()

https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-state#defn-stored-value
https://spec.polkadot.network/chap-state#defn-merkle-value
https://spec.polkadot.network/chap-state#defn-children-bitmap
https://spec.polkadot.network/chap-state#defn-node-value
https://spec.polkadot.network/chap-host-api#sect-ext-storage-root-version-2
https://spec.polkadot.network/chap-state#defn-node-subvalue
https://spec.polkadot.network/chap-state#defn-node-header
https://spec.polkadot.network/chap-state#defn-node-header
https://spec.polkadot.network/chap-state#defn-node-value

2.4.5. Managing Multiple Variants of State

Unless a node is committed to only updating its state according to the finalized block (Definition 94), it is inevitable for the node to store multiple variants
of the state (one for each block). This is, for example, necessary for nodes participating in the block production and finalization.

While the state trie structure (Section 2.4.3.) facilitates and optimizes storing and switching between multiple variants of the state storage, the Polkadot
Host does not specify how a node is required to accomplish this task. Instead, the Polkadot Host is required to implement (Definition
30):

Definition 30. Set State At Block

2.5. Child Storage

As clarified in Section 2.4., the Polkadot state storage implements a hash table for inserting and reading key-value entries. The child storage works the
same way but is stored in a separate and isolated environment. Entries in the child storage are not directly accessible via querying the main state
storage.

The Polkadot Host supports as many child storages as required by Runtime and identifies each separate child storage by its unique identifying key.
Child storages are usually used in situations where Runtime deals with multiple instances of a certain type of objects such as Parachains or Smart
Contracts. In such cases, the execution of the Runtime entrypoint might result in generating repeated keys across multiple instances of certain objects.
Even with repeated keys, all such instances of key-value pairs must be able to be stored within the Polkadot state.

In these situations, the child storage can be used to provide the isolation necessary to prevent any undesired interference between the state of
separated instances. The Polkadot Host makes no assumptions about how child storages are used, but provides the functionality for it via the Host API
(Section B.3.).

2.5.1. Child Tries

The child trie specification is the same as the one described in Section 2.4.3.. Child tries have their own isolated environment. Nonetheless, the main
Polkadot state trie depends on them by storing a node () which corresponds to an individual child trie. Here, is the child storage key
associated to the child trie, and is the Merkle value of its corresponding child trie computed according to the procedure described in Section 2.4.4..

The Polkadot Host API (Section B.3.) allows the Runtime to provide the key in order to identify the child trie, followed by a second key in order to
identify the value within that child trie. Every time a child trie is modified, the Merkle proof of the child trie stored in the Polkadot state must be

updated first. After that, the final Merkle proof of the Polkadot state can be computed. This mechanism provides a proof of the full Polkadot state
including all its child states.

2.6. Runtime Interactions

Like any transaction-based transition system, Polkadot’s state is changed by executing an ordered set of instructions. These instructions are known as
extrinsics. In Polkadot, the execution logic of the state transition function is encapsulated in a Runtime (Definition 1). For easy upgradability, this
Runtime is presented as a Wasm blob. Nonetheless, the Polkadot Host needs to be in constant interaction with the Runtime (Section 2.6.1.).

In Section 2.3., we specify the procedure of the process where the extrinsics are submitted, pre-processed, and validated by Runtime and queued to be
applied to the current state.

To make state replication feasible, Polkadot journals and batches a series of its extrinsics together into a structure known as a block, before propagating
them to other nodes, similar to most other prominent distributed ledger systems. The specification of the Polkadot block as well as the process of
verifying its validity, are both explained in Section 2.2..

Set-State-At

The function:

in which is a block in the block tree (Definition 4), sets the content of state storage equal to the resulting state of executing all extrinsics
contained in the branch of the block tree from genesis till block B including those recorded in Block .

For the definition of the state storage see Section 2.4..

Set-State-At B()

B

B

K ,V N N K N

V N

K N

V N

https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/chap-state#sect-state-storage-trie-structure
https://spec.polkadot.network/chap-state#defn-set-state-at
https://spec.polkadot.network/chap-state#defn-set-state-at
https://spec.polkadot.network/chap-state#sect-state-storage
https://spec.polkadot.network/chap-host-api#sect-child-storage-api
https://spec.polkadot.network/chap-state#sect-state-storage-trie-structure
https://spec.polkadot.network/chap-state#sect-merkl-proof
https://spec.polkadot.network/chap-host-api#sect-child-storage-api
https://spec.polkadot.network/chap-state#defn-state-machine
https://spec.polkadot.network/chap-state#sect-entrypoints-into-runtime
https://spec.polkadot.network/chap-state#sect-extrinsics
https://spec.polkadot.network/chap-state#sect-state-replication
https://spec.polkadot.network/chap-state#defn-block-tree
https://spec.polkadot.network/chap-state#sect-state-storage

2.6.1. Interacting with the Runtime

The Runtime (Definition 1) is the code implementing the logic of the chain. This code is decoupled from the Polkadot Host to make the logic of the chain
easily upgradable without the need to upgrade the Polkadot Host itself. The general procedure to interact with the Runtime is described by Interact-
With-Runtime.

Algorithm 4. Interact With Runtime

In this section, we describe the details upon which the Polkadot Host is interacting with the Runtime. In particular, and
 procedures called by Interact-With-Runtime are explained in Definition 32 and Definition 30 respectively. is the

Runtime code loaded from , as described in Definition 31, and is the Polkadot Host API, as described in Definition 214.

2.6.2. Loading the Runtime Code

The Polkadot Host expects to receive the code for the Runtime of the chain as a compiled WebAssembly (Wasm) Blob. The current runtime is stored in
the state database under the key represented as a byte array:

which is the ASCII byte representation of the string :code (Section A.3.3.). As a result of storing the Runtime as part of the state, the Runtime code
itself becomes state sensitive and calls to Runtime can change the Runtime code itself. Therefore the Polkadot Host needs to always make sure to
provide the Runtime corresponding to the state in which the entry point has been called. Accordingly, we define (Definition 31).

The initial Runtime code of the chain is provided as part of the genesis state (Section A.3.3.) and subsequent calls to the Runtime have the ability to, in
turn, upgrade the Runtime by replacing this Wasm blob with the help of the storage API (Section B.2.). Therefore, the executor must always load the
latest Runtime from storage - or preferably detect Runtime upgrades (Definition 11) - either based on the parent block when importing blocks or the
best/highest block when creating new blocks.

Definition 31. Runtime Code at State

The WASM blobs may be compressed using zstd. In such cases, there is an 8-byte magic identifier at the head of the blob, indicating that it should be
decompressed with zstd compression. The magic identifier prefix ZSTD_PREFIX = [82, 188, 83, 118, 70, 219, 142, 5] is different from the

WASM magic bytes. The decompression has to be applied on the blob excluding the ZSTD-PREFIX and has a Bomb Limit of CODE_BLOB_BOMB_LIMIT
= 50 * 1024 * 1024 to mitigate compression bomb attacks.

2.6.3. Code Executor

The Polkadot Host executes the calls of Runtime entrypoints inside a Wasm Virtual Machine (VM), which in turn provides the Runtime with access to
the Polkadot Host API. This part of the Polkadot Host is referred to as the Executor.

Definition 32 introduces the notation for calling the runtime entrypoint which is used whenever an algorithm of the Polkadot Host needs to access the
runtime.

Algorithm Interact-With-Runtime

Require:
 SET-STATE-AT()

CALL-RUNTIME-ENTRYPOINT()

where

 is the runtime entry point call.

 is the block hash indicating the state at the end of .

 are arguments to be passed to the runtime entrypoint.

F ,H (B), (A , … ,A)b 1 n

1: S ←B H (B)b

2: A ← Enc ((A , … ,A))SC 1 n

3: R , RE ,F ,A,A B B len

F

H Bb() B

A , … ,A 1 n

Set-State-At
Call-Runtime-Entrypoint R B

S B RE B

b = 3A,63,6F,64,65

R B

By , we refer to the Runtime code stored in the state storage at the end of the execution of block .R B B

https://spec.polkadot.network/chap-state#defn-state-machine
https://spec.polkadot.network/chap-state#algo-runtime-interaction
https://spec.polkadot.network/chap-state#algo-runtime-interaction
https://spec.polkadot.network/chap-state#algo-runtime-interaction
https://spec.polkadot.network/chap-state#defn-call-into-runtime
https://spec.polkadot.network/chap-state#defn-set-state-at
https://spec.polkadot.network/chap-state#defn-runtime-code-at-state
https://spec.polkadot.network/chap-host-api#defn-host-api-at-state
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-state#defn-runtime-code-at-state
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-host-api#sect-storage-api
https://spec.polkadot.network/chap-state#defn-digest
https://github.com/facebook/zstd
https://github.com/WebAssembly/design/blob/main/BinaryEncoding.md#high-level-structure
https://spec.polkadot.network/chap-state#defn-call-into-runtime

It is acceptable behavior that the Runtime panics during execution of a function in order to indicate an error. The Polkadot Host must be able to catch
that panic and recover from it.

In this section, we specify the general setup for an Executor that calls into the Runtime. In Appendix C we specify the parameters and return values for
each Runtime entrypoint separately.

Definition 32. Call Runtime Entrypoint

2.6.3.1. Memory Management

The Polkadot Host is responsible for managing the WASM heap memory starting at the exported symbol as a part of implementing the allocator Host
API (Section B.10.) and the same allocator should be used for any other heap allocation to be used by the Polkadot Runtime.

The size of the provided WASM memory should be based on the value of the storage key (an unsigned 64-bit integer), where each page has a size of
64KB. This memory should be made available to the Polkadot Runtime for import under the symbol name memory .

2.6.3.2. Sending Data to a Runtime Entrypoint

In general, all data exchanged between the Polkadot Host and the Runtime is encoded using the SCALE codec described in Section A.2.2.. Therefore
all runtime entrypoints have the following identical Wasm function signatures:

In each invocation of a Runtime entrypoints, the argument(s) which are supposed to be sent to the entrypoint, need to be SCALE encoded into a byte
array (Section A.2.2.) and copied into a section of Wasm shared memory managed by the shared allocator described in Section 2.6.3.1..

When the Wasm method, corresponding to the entrypoint, is invoked, two integers are passed as arguments. The first argument is set to the memory
address of the byte array in Wasm memory. The second argument sets the length of the encoded data stored in .

2.6.3.3. Receiving Data from a Runtime Entrypoint

The value which is returned from the invocation is an integer, representing two consecutive integers in which the least significant one indicates the
pointer to the offset of the result returned by the entrypoint encoded in SCALE codec in the memory buffer. The most significant one provides the size of
the blob.

2.6.3.4. Runtime Version Custom Section

For newer Runtimes, the Runtime version (Section C.4.1.) can be read directly from the Wasm custom section with the name runtime_version. The
content is a SCALE encoded structure as described in Section C.4.1..

Retrieving the Runtime version this way is preferred over calling the Core_version entrypoint since it involves significantly less overhead.

By

we refer to the task using the executor to invoke the while passing an argument to it and using the encoding described in Section
2.6.3.2..

Call-Runtime-Entrypoint R,RE, Runtime-Entrypoint,A,A n(≤)

A , … ,A 1 n

(func $runtime_entrypoint (param $data i32) (param $len i32) (result i64))

B

B B

https://spec.polkadot.network/chap-runtime-api
https://spec.polkadot.network/chap-host-api#sect-allocator-api
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-state#sect-memory-management
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://webassembly.github.io/spec/core/appendix/custom
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/chap-state#sect-runtime-send-args-to-runtime-enteries
https://spec.polkadot.network/chap-state#sect-runtime-send-args-to-runtime-enteries

3. Synchronization
Many applications that interact with the Polkadot network, to some extent, must be able to retrieve certain information about the network. Depending on
the utility, this includes validators that interact with Polkadot’s consensus and need access to the full state, either from the past or just the most up-to-
date state, or light clients that are only interested in the minimum information required in order to verify some claims about the state of the network, such
as the balance of a specific account. To allow implementations to quickly retrieve the required information, different types of synchronization protocols
are available, respectively Full, Fast, and Warp sync suited for different needs.

The associated network messages are specified in Section 4.8..

3.1. Warp Sync

Warp sync (Section 4.8.5.) only downloads the block headers where authority set changes occurred, so-called fragments (Definition 46), and by
verifying the GRANDPA justifications (Definition 50). This protocol allows nodes to arrive at the desired state much faster than fast sync.

3.2. Fast Sync

Fast sync works by downloading the block header history and validating the authority set changes (Section 3.3.1.) in order to arrive at a specific (usually
the most recent) header. After the desired header has been reached and verified, the state can be downloaded and imported (Section 4.8.4.). Once this
process has been completed, the node will automatically switch to a full sync.

3.3. Full Sync

The full sync protocol is the "default" protocol that’s suited for many types of implementations, such as archive nodes (nodes that store everything),
validators that participate in Polkadots consensus and light clients that only verify claims about the state of the network. Full sync works by listening to
announced blocks (Section 4.8.2.) and requesting the blocks from the announcing peers or just the block headers in case of light clients.

The full sync protocol usually downloads the entire chain, but no such requirements must be met. If an implementation only wants the latest, finalized
state, it can combine it with protocols such as fast sync (Section 3.2.) and/or warp sync (Section 3.1.) to make synchronization as fast as possible.

3.3.1. Consensus Authority Set

Because Polkadot is a proof-of-stake protocol, each of its consensus engines has its own set of nodes represented by known public keys, which have
the authority to influence the protocol in pre-defined ways explained in this Section. To verify the validity of each block, the Polkadot node must track the
current list of authorities (Definition 33) for that block.

Definition 33. Authority List

The authority list of block for consensus engine noted as is an array that contains the following pair of types for each of its
authorities :

 is the session public key (Definition 190) of authority . And is an unsigned 64-bit integer indicating the authority weight. The value of
 is part of the Polkadot state. The value for is set in the genesis state (Section A.3.3.) and can be retrieved using a

runtime entrypoint corresponding to consensus engine .

The authorities and their corresponding weights can be retrieved from the Runtime (Section C.10.1.).

B C Auth BC()
A ∈ Auth BC()

pk ,w (A A)

pk A A w A

Auth BC() Auth B C(0)
C

INFO

In Polkadot, the authorities are unweighted, i.e., the weights for all authorities are set to 1. The proportionality in terms of stakes is managed by the
NPOS (Nominated Proof-of-Stake) algorithm in Polkadot. Once validators are elected for an era using the NPOS algorithm, they are considered
equal in the BABE and GRANDPA consensus algorithms.

https://spec.polkadot.network/chap-networking#sect-network-messages
https://spec.polkadot.network/chap-networking#sect-msg-warp-sync
https://spec.polkadot.network/chap-networking#defn-warp-sync-proof
https://spec.polkadot.network/chap-networking#defn-grandpa-justifications-compact
https://spec.polkadot.network/chap-sync#sect-authority-set
https://spec.polkadot.network/chap-networking#sect-msg-state-request
https://spec.polkadot.network/chap-networking#sect-msg-block-announce
https://spec.polkadot.network/chap-sync#sect-sync-fast
https://spec.polkadot.network/chap-sync#sect-sync-warp
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/id-cryptography-encoding#defn-session-key
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-runtime-api#sect-rte-grandpa-auth
https://wiki.polkadot.network/docs/learn-phragmen

3.3.2. Runtime-to-Consensus Engine Message

The authority list (Definition 33) is part of the Polkadot state, and the Runtime has the authority to update this list in the course of any state transitions.
The Runtime informs the corresponding consensus engine about the changes in the authority set by adding the appropriate consensus message in the
form of a digest item (Definition 11) to the block header of block which caused the transition in the authority set.

The Polkadot Host must inspect the digest header of each block and delegate consensus messages to their consensus engines. The BABE and
GRANDPA consensus engine must react based on the type of consensus messages it receives. The active GRANDPA authorities can only vote for
blocks that occurred after the finalized block in which they were selected. Any votes for blocks before they came into effect would get rejected.

3.4. Importing and Validating Block

Block validation is the process by which a node asserts that a block is fit to be added to the blockchain. This means that the block is consistent with the
current state of the system and transitions to a new valid state.

New blocks can be received by the Polkadot Host via other peers (Section 4.8.3.) or from the Host’s own consensus engine (Chapter 5). Both the
Runtime and the Polkadot Host then need to work together to assure block validity. A block is deemed valid if the block author had authorship rights for
the slot in which the block was produced as well as if the transactions in the block constitute a valid transition of states. The former criterion is validated
by the Polkadot Host according to the block production consensus protocol. The latter can be verified by the Polkadot Host invoking entry into the
Runtime as (Section C.4.2.) as a part of the validation process. Any state changes created by this function on successful execution are persisted.

The Polkadot Host implements Import-and-Validate-Block to assure the validity of the block.

Algorithm 5. Import-and-Validate-Block

B

Algorithm Import-and-Validate-Block

Require:
SET-STORAGE-STATE-AT()
if then

VERIFY-BLOCK-JUSTIFICATION()
if then

MARK-AS-FINAL()
end if

end if
if then

return
end if
VERIFY-AUTHORSHIP-RIGHT()

 REMOVE-SEAL()
 CALL-RUNTIME-ENTRY()
 ADD-SEAL()

if TRUE then
PERSIST-STATE()

end if

where

 removes the Seal digest from the block (Definition 11) before submitting it to the Runtime.

 adds the Seal digest back to the block (Definition 11) for later propagation.

 implies the persistence of any state changes created by (Section C.4.2.) on successful execution.

 is the pruned block tree (Definition 4).

 is part of the block production consensus protocol and is described in Verify-Authorship-Right.

Finalized block and finality are defined in Chapter 6.

B, Just(B)
1: P (B)
2: Just(B) = ∅
3: B, Just(B)
4: B is Finalized and P (B) is not Finalized
5: P (B)
6:

7:

8: H (B) ∈p / PBT

9:

10:

11: Head(B)
12: B ← B

13: R ← Core_execute_block,B
14: B ← B

15: R =
16:

17:

Remove-Seal

Add-Seal

Persist-State Core_execute_block

PBT

Verify-Authorship-Right

https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-networking#sect-msg-block-request
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-execute-block
https://spec.polkadot.network/chap-sync#algo-import-and-validate-block
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-execute-block
https://spec.polkadot.network/chap-state#defn-block-tree
https://spec.polkadot.network/sect-block-production#algo-verify-authorship-right
https://spec.polkadot.network/sect-finality

4. Networking

4.1. Introduction

The Polkadot network is decentralized and does not rely on any central authority or entity to achieve its fullest potential of provided functionality. The
networking protocol is based on a family of open protocols, including protocol implemented libp2p, e.g., the distributed Kademlia hash table, which is
used for peer discovery.

This chapter walks through the behavior of the networking implementation of the Polkadot Host and defines the network messages. The implementation
details of the libp2p protocols used are specified in external sources as described in Section 4.2.

4.2. External Documentation

Complete specification of the Polkadot networking protocol relies on the following external protocols:

libp2p - libp2p is a modular peer-to-peer networking stack composed of many modules and different parts. includes the multiplexing protocols and

libp2p addressing - The Polkadot Host uses the libp2p addressing system to identify and connect to peers.

Kademlia - Kademlia is a distributed hash table for decentralized peer-to-peer networks. The Polkadot Host uses Kademlia for peer discovery.

Noise - The Noise protocol is a framework for building cryptographic protocols. The Polkadot Host uses Noise to establish the encryption layer to
remote peers.

yamux - yamux is a multiplexing protocol developed by HashiCorp. It is the de-facto standard for the Polkadot Host. Section 4.7. describes the
subprotocol in more detail.

Protocol Buffers - Protocol Buffers is a language-neutral, platform-neutral mechanism for serializing structured data and is developed by Google.
The Polkadot Host uses Protocol Buffers to serialize specific messages, as clarified in Section 4.8..

4.3. Node Identities

Like any other distributed system, each Polkadot Host node has a unique global identifier. This identifier, called PeerId , serves as a singular reference
to a particular node within the overall network. In Polkadot, each node is required to maintain its own pair of ED25519 cryptographic keys from which
the PeerId is derived.

The Polkadot node’s PeerId is structured based on the libp2p specification but does not fully conform to the specification. In particular, it does not

support CID and the only supported key type is ED25519. The PeerId is built by hashing the encoded public key with multihash and represented as
follows:

Definition 34. PeerId

INFO

This chapter, in its current form, is incomplete and considered work in progress. Authors appreciate receiving requests for clarification or any
reports regarding deviation from the current Polkadot network protocol. This can be done by filing an issue in Polkadot Specification repository.

The byte representation of the PeerId is always of the following bytes in this exact order:

b =0 0

b =1 36

b =2 8

b =3 1

b =4 18

https://spec.polkadot.network/chap-networking#sect-networking-external-docs
https://github.com/libp2p/specs
https://docs.libp2p.io/concepts/addressing/
https://en.wikipedia.org/wiki/Kademlia
https://noiseprotocol.org/
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
https://spec.polkadot.network/chap-networking#sect-network-messages
https://pl-launchpad.io/curriculum/libp2p/connections/#peer-identity
https://docs.libp2p.io/concepts/peer-id/
https://github.com/multiformats/cid
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md#keys
https://github.com/multiformats/multihash
https://github.com/w3f/polkadot-spec

4.4. Network bootstrap and discovery

The Polkadot Host uses various mechanisms to find peers within the network, to establish and maintain a list of peers, and to share that list with other
peers from the network as follows:

Bootstrap nodes are hard-coded node identities and addresses provided by the genesis state (Section A.3.3.).

mDNS is a protocol that performs a broadcast to the local network. Nodes that might be listening can respond to the broadcast. The libp2p mDNS
specification defines this process in more detail. This protocol is an optional implementation detail for Polkadot Host implementers and is not
required to participate in the Polkadot network.

Kademlia requests invoking Kademlia requests, where nodes respond with their list of available peers. Kademlia requests are performed on a
specific substream as described in Section 4.7..

4.5. Connection establishment

Polkadot nodes connect to peers by establishing a TCP connection. Once established, the node initiates a handshake with the remote peers on the
encryption layer. An additional layer on top of the encryption layer, known as the multiplexing layer, allows a connection to be split into substreams, as
described by the yamux specification, either by the local or remote node.

The Polkadot node supports two types of substream protocols. Section 4.7. describes the usage of each type in more detail:

Request-Response substreams: After the protocol is negotiated by the multiplexing layer, the initiator sends a single message containing a
request. The responder then sends a response, after which the substream is then immediately closed. The requests and responses are prefixed
with their LEB128 encoded length.

Notification substreams. After the protocol is negotiated, the initiator sends a single handshake message. The responder can then either accept
the substream by sending its own handshake or reject it by closing the substream. After the substream has been accepted, the initiator can send an
unbound number of individual messages. The responder keeps its sending side of the substream open, despite not sending anything anymore, and
can later close it in order to signal to the initiator that it no longer wishes to communicate.

Handshakes and messages are prefixed with their LEB128 encoded lengths. A handshake can be empty, in which case the length prefix would be
0.

Connections are established by using the following protocols:

/noise - a protocol that is announced when a connection to a peer is established.

/multistream/1.0.0 - a protocol that is announced when negotiating an encryption protocol or a substream.

/yamux/1.0.0 - a protocol used during yamux negotiation. See Section 4.7. for more information.

The Polkadot Host can establish a connection with any peer of which it knows the address. The Polkadot Host supports multiple networking protocols:

TCP/IP with addresses in the form of /ip4/1.2.3.4/tcp/30333 to establish a TCP connection and negotiate encryption and a multiplexing layer.

WebSocket with addresses in the form of /ip4/1.2.3.4/tcp/30333/ws to establish a TCP connection and negotiate the WebSocket protocol
within the connection. Additionally, the encryption and multiplexing layer are negotiated within the WebSocket connection.

DNS addresses in form of /dns/example.com/tcp/30333 and /dns/example.com/tcp/30333/ws .

where

 is the multihash prefix of value (implying no hashing is used).

 the length of the PeerId (remaining bytes).

 and are a protobuf encoded field-value pair indicating the used key type (field of value implies ED25519).

, and are a protobuf encoded field-value pair where indicates the length of the public key followed by the raw ED25519 public
key itself, which varies for each Polkadot Host and is always 32 bytes (field contains the public key, which has a field value length prefix).

b =5 32

b =6..37 …

b 0 0

b 1

b 2 b 3 1 1

b 4 b 5 b 6..37 b 5

2

https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://github.com/libp2p/specs/blob/master/discovery/mdns.md
https://github.com/libp2p/specs/blob/master/discovery/mdns.md
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://en.wikipedia.org/wiki/LEB128
https://en.wikipedia.org/wiki/LEB128
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://github.com/multiformats/multihash#multihash
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md#keys

The addressing system is described in the libp2p addressing specification. After a base-layer protocol is established, the Polkadot Host will apply the
Noise protocol to establish the encryption layer as described in Section 4.6..

4.6. Encryption Layer

Polkadot protocol uses the libp2p Noise framework to build an encryption protocol. The Noise protocol is a framework for building encryption protocols.
libp2p utilizes that protocol for establishing encrypted communication channels. Refer to the libp2p Secure Channel Handshake specification for a
detailed description.

Polkadot nodes use the XX handshake pattern to establish a connection between peers. The three following steps are required to complete the
handshake process:

1. The initiator generates a key pair and sends the public key to the responder. The Noise specification and the libp2p PeerId specification describe
keypairs in more detail.

2. The responder generates its own key pair and sends its public key back to the initiator. After that, the responder derives a shared secret and uses it
to encrypt all further communication. The responder now sends its static Noise public key (which may change anytime and does not need to be
persisted on disk), its libp2p public key, and a signature of the static Noise public key signed with the libp2p public key.

3. The initiator derives a shared secret and uses it to encrypt all further communication. It also sends its static Noise public key, libp2p public key, and
signature to the responder.

After these three steps, both the initiator and responder derive a new shared secret using the static and session-defined Noise keys, which are used to
encrypt all further communication.

4.7. Protocols and Substreams

After the node establishes a connection with a peer, the use of multiplexing allows the Polkadot Host to open substreams. libp2p uses the yamux
protocol to manage substreams and to allow the negotiation of application-specific protocols, where each protocol serves a specific utility.

The Polkadot Host uses multiple substreams whose usage depends on a specific purpose. Each substream is either a Request-Response substream or
a Notification substream, as described in Section 4.5..

/ipfs/ping/1.0.0 - Open a standardized substream libp2p to a peer and initialize a ping to verify if a connection is still alive. If the peer does

not respond, the connection is dropped. This is a Request-Response substream.

Further specification and reference implementations are available in the libp2p documentation.

/ipfs/id/1.0.0 - Open a standardized libp2p substream to a peer to ask for information about that peer. This is a Request-Response
substream, but the initiator does not send any message to the responder and only waits for the response.

Further specification and reference implementations are available in the libp2p documentation.

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/kad - Open a standardized substream for Kademlia
FIND_NODE requests. This is a Request-Response substream, as defined by the libp2p standard.

Further specification and reference implementation are available on Wikipedia respectively the golang Github repository.

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/light/2 - a request and response protocol that allows a light
client to request information about the state. This is a Request-Response substream.

The messages are specified in Section 7.4..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/block-announces/1 - a substream/notification protocol

which sends blocks to connected peers. This is a Notification substream.

INFO

The prefixes on those substreams are known as protocol identifiers and are used to segregate communications to specific networks. This prevents
any interference with other networks. dot is used exclusively for Polkadot. Kusama, for example, uses the protocol identifier ksmcc3 .

INFO

For backward compatibility reasons, /dot/light/2 is also a valid substream for those messages.

https://docs.libp2p.io/concepts/addressing/
https://spec.polkadot.network/chap-networking#sect-encryption-layer
https://github.com/libp2p/specs/tree/master/noise
https://noiseexplorer.com/patterns/XX/
https://github.com/libp2p/specs/tree/master/noise
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://spec.polkadot.network/chap-networking#sect-connection-establishment
https://docs.libp2p.io/concepts/protocols/#ping
https://docs.libp2p.io/concepts/protocols/#identify
https://en.wikipedia.org/wiki/Kademlia
https://github.com/libp2p/go-libp2p-kad-dht
https://spec.polkadot.network/sect-lightclient#sect-light-msg

The messages are specified in Section 4.8.2..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/sync/2 - a request and response protocol that allows the

Polkadot Host to request information about blocks. This is a Request-Response substream.

The messages are specified in Section 4.8.3..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/sync/warp - a request and response protocol that allows the
Polkadot Host to perform a warp sync request. This is a Request-Response substream.

The messages are specified in Section 4.8.5..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/transactions/1 - a substream/notification protocol which

sends transactions to connected peers. This is a Notification substream.

The messages are specified in Section 4.8.6..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/grandpa/1 - a substream/notification protocol that sends
GRANDPA votes to connected peers. This is a Notification substream.

The messages are specified in Section 4.8.7..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/beefy/1 - a substream/notification protocol which sends

signed BEEFY payloads, as described in Section 6.7., to connected peers. This is a Notification substream.

The messages are specified in Section 4.8.8..

4.8. Network Messages

The Polkadot Host must actively communicate with the network in order to participate in the validation process or act as a full node.

INFO

For backward compatibility reasons, /dot/block-announces/1 is also a valid substream for those messages.

INFO

For backward compatibility reasons, /dot/sync/2 is also a valid substream for those messages.

INFO

For backward compatibility reasons, /dot/sync/warp is also a valid substream for those messages.

INFO

For backward compatibility reasons, /dot/transactions/1 is also a valid substream for those messages.

INFO

For backward compatibility reasons, /paritytech/grandpa/1 is also a valid substream for those messages.

INFO

For backward compatibility reasons, /paritytech/beefy/1 is also a valid substream for those messages.

INFO

The Polkadot network originally only used SCALE encoding for all message formats. Meanwhile, Protobuf has been adopted for certain messages.
The encoding of each listed message is always SCALE encoded unless Protobuf is explicitly mentioned. Encoding and message formats are
subject to change.

https://spec.polkadot.network/chap-networking#sect-msg-block-announce
https://spec.polkadot.network/chap-networking#sect-msg-block-request
https://spec.polkadot.network/chap-networking#sect-msg-warp-sync
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-networking#sect-msg-grandpa
https://spec.polkadot.network/sect-finality#sect-grandpa-beefy
https://spec.polkadot.network/chap-networking#sect-msg-grandpa-beefy

4.8.1. Discovering authorities

The discovery mechanism enables Polkadot nodes to both publish their local addresses and learn about other nodes' identifiers and addresses. The
Authority discovery mechanism differs from the bootstrap mechanism, described in Section 4.4., in that it restricts the discovery output to nodes
currently holding the authority role (e.g., validators).

4.8.1.1. Requesting authority identifier and addresses

The following requests are exposed by the discovery authority to Polkadot nodes.

Definition 35. Authority addresses request

Definition 36. Authority identifier request

4.8.1.2. Publishing and discovering addresses

An authority addresses request is a request that Polkadot nodes can send to the authority discovery mechanism in order to request the
addresses of an authority node. The request has the following format:

where

 is the authorityId 256-bit identifier representing the public key of the targeted authority node.

expected response

The response to the previous query includes an enum with one of the following values:

Value Description

None A type representing no value

HashSet[Multiaddr] An unordered collection of unique Multiaddr elements

with

Multiaddr a Multiaddr data structure.

get_addresses_by_authority_id authorityId()

authorityId

An authority identifier request is a request that Polkadot nodes can send to the authority discovery mechanism in order to request the
AuthorityId of an authority node. The request has the following format:

where

 is the Polkadot node’s PeerId (Definition 34).

expected response The response to the previous query includes an enum with one of the following values:

Value Description

None A type representing no value

HashSet[authorityId] An unordered collection of unique authorityId elements

with

authorityId is the 256-bit identifier representing the public key of the requested PeerId .

get_authority_ids_by_peer_id PeerId()

PeerId

https://spec.polkadot.network/chap-networking#sect-network-bootstrap
https://github.com/libp2p/specs/blob/master/addressing/README.md#multiaddr-in-libp2p
https://spec.polkadot.network/chap-networking#defn-peer-id

The authority discovery mechanism triggers operations to publish a SignedAuthorityRecord of the addresses of authorities it knows from its current
and next authority sets into the DHT. The SignedAuthorityRecord and the publish operation are created as follows:

Definition 37. Signed Authority Record

Definition 38. Publishing addresses

The authority discovery mechanism also invokes operations on the DHT to discover the addresses of authority nodes, as follows:

Definition 39. Discovering addresses

The SignedAuthorityRecord is a Protobuf serialized structure representing the authority records and signature to send over the wire. It is
defined in the following format:

Type Id Description

AuthorityRecord 1 Serialized authority record

bytes 2 An Schnorrkel/Ristretto x25519 ("sr25519") signature

PeerSignature 3 Serialized peer signature

where

AuthorityRecord is a serialized Protobuf structure that lists the addresses of authority nodes that are currently part of the authority set.

Type Id Description

repeated bytes 1 Binary representation of zero or more multiaddresses through which a node is reachable

PeerSignature is a Protobuf serialized structure indicating the signature and public key used to sign and verify the AuthorityRecord . This is the
protobuf structure used to exchange the signature with other nodes.

Type Id Description

bytes 1 An sr25519 signature

bytes 2 A sr25519 public key used to verify the signature

For each authority node in the current authority set, the local node invokes a put_value operation that triggers the publishing operation into the
DHT with the following format:

where

 is the hash of the authorityId of node .

 is the SignedAuthorityRecord described above(Definition 37).

i

put_value KademliaKey , Sig (i AR)

KademliaKey i Sha256 i

Sig AR

Periodically, the authority discovery performs a number of get_value operations in the following format:

where

 is the hash of the authorityId of node selected from the current authority set.

get_value KademliaKey (i)

KademliaKey i Sha256 i

https://spec.polkadot.network/chap-networking#defn-signed-authority-record

4.8.2. Announcing blocks

When the node creates or receives a new block, it must be announced to the network. Other nodes within the network will track this announcement and
can request information about this block. The mechanism for tracking announcements and requesting the required data is implementation-specific.

Block announcements, requests, and responses are sent over the substream as described in Definition 40.

Definition 40. Block Announce Handshake

Definition 41. Block Announce

4.8.3. Requesting Blocks

Block requests can be used to retrieve a range of blocks from peers. Those messages are sent over the /dot/sync/2 substream.

Definition 42. Block Request

The BlockAnnounceHandshake initializes a substream to a remote peer. Once established, all BlockAnounce messages (Definition 41) created
by the node are sent to the /dot/block-announces/1 substream.

The BlockAnnounceHandshake is a structure of the following format:

where

BA =h Enc R,N ,h ,h SC(B B G)

R =

⎩
⎨
⎧1

2
4

The node is a full node
The node is a light client
The node is a validator

N =B Best block number according to the node

h =B Best block hash according to the node

h =G Genesis block hash according to the node

The BlockAnnounce message is sent to the specified substream and indicates to remote peers that the node has either created or received a
new block.

The message is structured in the following format:

where

BA = Enc Head B , bSC(())

Head B =() Header of the announced block

b = {
0
1

Is not part of the best chain
Is the best block according to the node

The BlockRequest message is a Protobuf serialized structure of the following format:

Type Id Description Value

uint32 1 Bits of block data to request

oneof Start from this block

Direction 5 Sequence direction, interpreted as Id 0 (ascending) if missing.

B f

B s

https://spec.polkadot.network/chap-networking#defn-block-announce-handshake
https://spec.polkadot.network/chap-networking#defn-block-announce

Definition 43. Block Response

Type Id Description Value

uint32 6 Maximum amount (optional)

where

 indicates all the fields that should be included in the request. its big-endian encoded bitmask that applies to all desired fields with bitwise
OR operations. For example, the value to request Header and Justification is 0001 0001 (17).

Field Value

Header 0000 0001

Body 0000 0010

Justification 0001 0000

 is a Protobuf structure indicating a varying data type (enum) of the following values:

Type Id Description

bytes 2 The block hash

bytes 3 The block number

Direction is a Protobuf structure indicating the sequence direction of the requested blocks. The structure is a varying data type (enum) of the
following format:

Id Description

0 Enumerate in ascending order (from child to parent)

1 Enumerate in descending order (from parent to canonical child)

 is the number of blocks to be returned. An implementation-defined maximum is used when unspecified.

B m

B f

B f

B s

B m

The BlockResponse message is received after sending a BlockRequest message to a peer. The message is a Protobuf serialized structure of
the following format:

Type Id Description

Repeated BlockData 1 Block data for the requested sequence

where BlockData is a Protobuf structure containing the requested blocks. Do note that the optional values are either present or absent depending
on the requested fields (bitmask value). The structure has the following format:

Type Id Description Value

bytes 1 Block header hash Definition 12

bytes 2 Block header (optional) Definition 10

repeated bytes 3 Block body (optional) Definition 13

bytes 4 Block receipt (optional)

https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body

4.8.4. Requesting States

The Polkadot Host can request the state in the form of a key/value list at a specified block.

When receiving state entries from the state response messages (Definition 45), the node can verify the entries with the entry proof (id 1 in
KeyValueStorage) against the Merkle root in the block header (of the block specified in Definition 44). Once the state response message claims that all
entries have been sent (id 3 in KeyValueStorage), the node can use all collected entry proofs and validate them against the Merkle root to confirm that
claim.

See the synchronization chapter for more information (Chapter 3).

Definition 44. State Request

Definition 45. State Response

Type Id Description Value

bytes 5 Block message queue (optional)

bytes 6 Justification (optional) Definition 83

bool 7 Indicates whether the justification is empty (i.e., should be ignored)

A state request is sent to a peer to request the state at a specified block. The message is a single 32-byte Blake2 hash which indicates the block
from which the sync should start.

Depending on what substream is used, the remote peer either sends back a state response (Definition 45) on the /dot/sync/2 substream or a
warp sync proof (Definition 46) on the /dot/sync/warp .

The state response is sent to the peer that initialized the state request (Definition 44) and contains a list of key/value entries with an associated
proof. This response is sent continuously until all key/value pairs have been submitted.

Type Id Description

repeated KeyValueStateEntry 1 State entries

bytes 2 State proof

where KeyValueStateEntry is of the following format:

Type Id Description

bytes 1 Root of the entry, empty if top-level

repeated StateEntry 2 Collection of key/values

bool 3 Equal 'true' if there are no more keys to return.

and StateEntry:

Type Id Description

bytes 1 The key of the entry

bytes 2 The value of the entry

https://spec.polkadot.network/chap-networking#defn-msg-state-response
https://spec.polkadot.network/chap-networking#defn-msg-state-request
https://spec.polkadot.network/chap-sync
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#defn-msg-state-response
https://spec.polkadot.network/chap-networking#defn-warp-sync-proof
https://spec.polkadot.network/chap-networking#defn-msg-state-request

4.8.5. Warp Sync

The warp sync protocols allow nodes to retrieve blocks from remote peers where authority set changes occurred. This can be used to speed up
synchronization to the latest state.

See the synchronization chapter for more information (Chapter 3).

Definition 46. Warp Sync Proof

4.8.6. Transactions

Transactions (Section 2.3.) are sent directly to peers with which the Polkadot Host has an open transaction substream (Definition 47). Polkadot Host
implementers should implement a mechanism that only sends a transaction once to each peer and avoids sending duplicates. Sending duplicate
transactions might result in undefined consequences such as being blocked for bad behavior by peers.

The mechanism for managing transactions is further described in Section Section 2.3..

Definition 47. Transaction Message

4.8.7. GRANDPA Messages

The exchange of GRANDPA messages is conducted on the substream. The process for the creation and distribution of these messages is described in
Chapter 6. The underlying messages are specified in this section.

Definition 48. Grandpa Gossip Message

The warp sync proof message, , is sent to the peer that initialized the state request (Definition 44) on the /dot/sync/warp substream and
contains accumulated proof of multiple authority set changes (Section 3.3.2.). It’s a data structure of the following format:

 is an array consisting of warp sync fragments of the following format:

where is the last block header containing a digest item (Definition 11) signaling an authority set change from which the next authority set
change can be fetched from. is the GRANDPA justification (Definition 83) and is a boolean that indicates whether the warp sync has
been completed.

P

P = f …f ,c(x y)

f …f x y

f = B , J Bx (h
r,stage())

B h

J Br,stage() c

The transactions message is the structure of how the transactions are sent over the network. It is represented by and is defined as follows:

in which

Where each is a byte array and represents a separate extrinsic. The Polkadot Host is agnostic about the content of an extrinsic and treats it as
a blob of data.

Transactions are sent over the /dot/transactions/1 substream.

M T

M =T Enc C , … ,C SC(1 n)

C =i Enc E SC(i)

E i

A GRANDPA gossip message, , is a varying datatype (Definition 198) which identifies the message type that is cast by a voter followed by the

message itself.

M

M =

⎩

⎨

⎧0
1
2
3
4

Vote message
Commit message
Neighbor message

Catch-up request message
Catch-up message

V m

C m

N m

R m

U m

https://spec.polkadot.network/chap-sync
https://spec.polkadot.network/chap-state#sect-extrinsics
https://spec.polkadot.network/chap-networking#defn-transactions-message
https://spec.polkadot.network/chap-state#sect-extrinsics
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/chap-networking#defn-msg-state-request
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 49. GRANDPA Vote Messages

Definition 50. GRANDPA Compact Justification Format

Definition 51. GRANDPA Commit Message

where

 is defined in Definition 49.

 is defined in Definition 51.

 is defined in Definition 52.

 is defined in Definition 53.

 is defined in Definition 54.

V m

C m

N m

R m

U M

A GRANDPA vote message by voter , , is gossip to the network by voter with the following structure:

where

 is an unsigned 64-bit integer indicating the Grandpa round number (Definition 81).

 is an unsigned 64-bit integer indicating the authority Set Id (Definition 78).

 is a 512-bit byte array containing the signature of the authority (Definition 82).

 is a 256-bit byte array containing the ed25519 public key of the authority.

 is a 8-bit integer of value 0 if it’s a pre-vote sub-round, 1 if it’s a pre-commit sub-round or 2 if it’s a primary proposal message.

 is the GRANDPA vote for block (Definition 81).

This message is the sub-component of the GRANDPA gossip message (Definition 48) of type Id 0.

v M v
r,stage v

M B =v
r,stage() Enc r, id , SigMsgSC(V)

SigMsg = msg, Sig , v (v i

r,stage
id)

msg = Enc stage,V BSC(v
r,stage())

r

id V

Sig v i

r,stage

v id

stage

V Bv
r,stage() B

The GRANDPA compact justification format is an optimized data structure to store a collection of pre-commits and their signatures to be
submitted as part of a commit message. Instead of storing an array of justifications, it uses the following format:

where

 is a 256-bit byte array containing the pre-commit vote of authority (Definition 81).

 is a 512-bit byte array containing the pre-commit signature of authority (Definition 82).

 is a 256-bit byte array containing the public key of authority .

J =v 0,…n

r,comp V , …V , Sig , v , … Sig , v ({ v 0
r,pc

v n

r,pc} {(v 0

r,pc
id 0) (v n

r,pc
id n)})

V v i

r,pc v i

Sig v i

r,pc v i

v id n v i

A GRANDPA commit message for block in round , , is a message broadcasted by voter to the network indicating that voter
has finalized block in round . It has the following structure:

where

B r M Bv
r,Fin() v v

B r

M B =v
r,Fin() Enc r, id ,V B , J SC(V v

r() v 0,…n

r,comp)

https://spec.polkadot.network/chap-networking#defn-grandpa-vote-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-commit-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-neighbor-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-request-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-response-msg
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-sign-round-vote
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-sign-round-vote

4.8.7.1. GRANDPA Neighbor Messages

Neighbor messages are sent to all connected peers but they are not repropagated on reception. A message should be sent whenever the values of the
message change and at least every 5 minutes. The sender should take the recipient's state into account and avoid sending messages to peers that are
using different voter sets or are in a different round. Messages received from a future voter set or round can be dropped and ignored.

Definition 52. GRANDPA Neighbor Message

4.8.7.2. GRANDPA Catch-up Messages

Whenever a Polkadot node detects that it is lagging behind the finality procedure, it needs to initiate a catch-up procedure. GRANDPA Neighbor
messages (Definition 52) reveal the round number for the last finalized GRANDPA round which the node’s peers have observed. This provides the
means to identify a discrepancy in the latest finalized round number observed among the peers. If such a discrepancy is observed, the node needs to
initiate the catch-up procedure explained in Section 6.6.1.).

In particular, this procedure involves sending a catch-up request and processing catch-up response messages.

Definition 53. Catch-Up Request Message

Definition 54. Catch-Up Response Message

 is an unsigned 64-bit integer indicating the round number (Definition 81).

 is the authority set Id (Definition 78).

 is a 256-bit array containing the GRANDPA vote for block (Definition 80).

 is the compacted GRANDPA justification containing observed pre-commit of authorities to (Definition 50).

This message is the sub-component of the GRANDPA gossip message (Definition 48) of type Id 1.

r

id V

V Bv
r() B

J v 0,…n

r,comp v 0 v n

A GRANDPA Neighbor Message is defined as:

where

 is an unsigned 8-bit integer indicating the version of the neighbor message, currently 1.

 is an unsigned 64-bit integer indicating the round number (Definition 81).

 is an unsigned 64-bit integer indicating the authority Id (Definition 78).

 is an unsigned 32-bit integer indicating the block number of the last finalized block .

This message is the sub-component of the GRANDPA gossip message (Definition 48) of type Id 2.

M =neigh Enc v, r, id ,H B SC(V i(last))

v

r

id V

H B i(last) B last

A GRANDPA catch-up request message for round , , is a message sent from node to its voting peer node requesting the

latest status of a GRANDPA round of the authority set along with the justification of the status and has the following structure:

This message is the sub-component of the GRANDPA Gossip message (Definition 48) of type Id 3.

r M id , ri,v
Cat−q(V) i v

r >′ r V id

M =i,v
r,Cat−q Enc r, id SC(V)

A GRANDPA catch-up response message for round , , is a message sent by a node to node in response of a catch-up

request in which is the latest GRANDPA round which v has prove of its finalization and has the following structure:

Where is the highest block which believes to be finalized in round (Definition 81). is the highest ancestor of all blocks voted on in the

arrays of justifications and (Definition 83) with the exception of the equivocatory votes.

r M id , rv,i
Cat−s(V) v i

M id , rv,i
Cat−q(V

′) r ≥ r′

M
=v,i

Cat−s Enc id , r, J B , J B ,H B ,H BSC(V 0,…n
r,pv () 0,…m

r,pc () h(′) i(′))

B v r B′

J B0,…n
r,pv () J B0,…m

r,pc ()

https://spec.polkadot.network/chap-networking#defn-grandpa-neighbor-msg
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-vote
https://spec.polkadot.network/chap-networking#defn-grandpa-justifications-compact
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-grandpa-justification

4.8.8. GRANDPA BEEFY

This section defines the messages required for the BEEFY protocol (Section 6.7.). Those messages are sent over the
/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/beefy/1 substream.

Definition 55. Commitment

Definition 56. Vote Message

Definition 57. Signed Commitment

Definition 58. Signed Commitment Witness

This message is the sub-component of the GRANDPA Gossip message (Definition 48) of type Id 4.

A commitment, , contains the information extracted from the finalized block at height as specified in the message body and a
datastructure of the following format:

where

 is the MMR root of all the block header hashes leading up to the latest, finalized block.

 is the block number this commitment is for. Namely the latest, finalized block.

 is the current authority set Id (Definition 78).

C H B i(last)

C = R ,H B , id (h i(last) V)

R h

H B i(last)
id V

A vote message, , is direct vote created by the Polkadot Host on every BEEFY round and is gossiped to its peers. The message is a
datastructure of the following format:

where

 is the BEEFY commitment (Definition 55).

 is the ECDSA public key of the Polkadot Host.

 is the signature created with by signing the payload in .

M v

M =v Enc C,A ,A SC(id
bfy

sig)

C

A id
bfy

A sig A id
bfy R h C

A signed commitment, , is a datastructure of the following format:

where

 is the BEEFY commitment (Definition 55).

 is an array where its exact size matches the number of validators in the current authority set as specified by (Definition 78) in .
Individual items are of the type Option (Definition 200), which can contain a signature of a validator which signed the same payload (in)
and is active in the current authority set. It’s critical that the signatures are sorted based on their corresponding public key entry in the
authority set. For example, the signature of the validator at index 3 in the authority set must be placed at index 3 in . If not signature is
available for that validator, then the Option variant is None inserted (Definition 200). This sorting allows clients to map public keys to their
corresponding signatures.

M sc

M =SC Enc C,S SC(n)

S =n A , …A (0
sig

n
sig)

C

S n id V C

R h C

Sn

A signed commitment witness, , is a light version of the signed BEEFY commitment (Definition 57). Instead of containing the entire list of

signatures, it only claims which validator signed the payload. The message is a datastructure of the following format:

M SC
w

https://spec.polkadot.network/sect-finality#sect-grandpa-beefy
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-commitment
https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-commitment
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-signed-commitment

where

 is the BEEFY commitment (Definition 55).

 is an array where its exact size matches the number of validators in the current authority set as specified by in . Individual items

are booleans which indicate whether the validator has signed the payload (true) or not (false). It’s critical that the boolean indicators are sorted
based on their corresponding public key entry in the authority set. For example, the boolean indicator of the validator at index 3 in the authority
set must be placed at index 3 in . This sorting allows clients to map public keys to their corresponding boolean indicators.

 is the MMR root of the signatures in the original signed BEEFY commitment (Definition 57).

M =SC
w Enc C,V ,R SC(0,…n sig)

C

V 0,…n id V C

V n

R sig

https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-commitment
https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-signed-commitment

5. Block Production

5.1. Introduction

The Polkadot Host uses BABE protocol for block production. It is designed based on Ouroboros Praos. BABE execution happens in sequential non-
overlapping phases known as an epoch. Each epoch is divided into a predefined number of slots. All slots in each epoch are sequentially indexed
starting from 0. At the beginning of each epoch, the BABE node needs to run Block-Production-Lottery to find out in which slots it should produce a
block and gossip to the other block producers. In turn, the block producer node should keep a copy of the block tree and grow it as it receives valid
blocks from other block producers. A block producer prunes the tree in parallel by eliminating branches that do not include the most recently finalized
blocks (Definition 5).

5.1.1. Block Producer

A block producer, noted by , is a node running the Polkadot Host, which is authorized to keep a transaction queue and which it gets a turn in
producing blocks.

5.1.2. Block Authoring Session Key Pair

Block authoring session key pair is an SR25519 key pair which the block producer signs by their account key (Definition 187) and is

used to sign the produced block as well as to compute its lottery values in Block-Production-Lottery.

Definition 59. Epoch and Slot

Definition 60. Epoch and Slot Duration

Definition 61. Epoch Subchain

Definition 62. Equivocation

P j

sk , pk (j
s

j
s) P j

A block production epoch, formally referred to as , is a period with a pre-known starting time and fixed-length during which the set of block
producers stays constant. Epochs are indexed sequentially, and we refer to the epoch since genesis by . Each epoch is divided into equal-
length periods known as block production slots, sequentially indexed in each epoch. The index of each slot is called a slot number. The equal
length duration of each slot is called the slot duration and indicated by . Each slot is awarded to a subset of block producers during which they
are allowed to generate a block.

E

nth E n

T

INFO

Substrate refers to an epoch as a "session" in some places. However, epoch should be the preferred and official name for these periods.

We refer to the number of slots in epoch by . is set to the duration field in the returned data from the call of the Runtime entry
BabeApi_configuration (Section C.11.1.) at genesis. For a given block , we use the notation to refer to the slot during which has been
produced. Conversely, for slot , is the set of Blocks generated at slot .

Definition 61 provides an iterator over the blocks produced during a specific epoch.

E n sc n sc n

B s B B

s B c s

By for epoch , we refer to the path graph of containing all the blocks generated during the slots of epoch . When there
is more than one block generated at a slot, we choose the one which is also on .

SubChain E (n) E n BT E n

Longest-Chain BT()

A block producer equivocates if they produce more than one block at the same slot. The proof of equivocation is the given distinct headers that
were signed by the validator and which include the slot number.

https://eprint.iacr.org/2017/573.pdf
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-state#defn-pruned-tree
https://spec.polkadot.network/id-cryptography-encoding#defn-account-key
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-epoch-subchain

Definition 63. BABE Consensus Message

5.2. Block Production Lottery

The BABE constant (Definition 64) is initialized at genesis to the value returned by calling BabeApi_configuration (Section C.11.1.). For efficiency
reasons, it is generally updated by the Runtime through the next config data consensus message in the digest (Definition 11) of the first block of an
epoch for the next epoch.

A block producer aiming to produce a block during should run (Block-Production-Lottery) to identify the slots it is awarded. These are the slots during
which the block producer is allowed to build a block. The is the block producer lottery secret key and is the index of the epoch for whose slots the

block producer is running the lottery.

In order to ensure consistent block production, BABE uses secondary slots in case no authority wins the (primary) block production lottery. Unlike the
lottery, secondary slot assignees are known upfront publically (Definition 67). The Runtime provides information on how or if secondary slots are
executed (Section C.11.1.), explained further in Definition 67.

Definition 64. BABE Constant

Definition 65. Winning Threshold

The Polkadot Host must detect equivocations committed by other validators and submit those to the Runtime as described in Section C.11.6..

, the consensus message for BABE, is of the following format:

where

1
implies next epoch data: The Runtime issues this message on every first block of an epoch. The supplied authority set Definition 33,

, and randomness Definition 76, , are used in the next epoch . In case the epochs to are skipped (i.e.,
BABE does not produce blocks), then the epoch data is used by the epoch .

2
implies on disabled: A 32-bit integer, , indicating the individual authority in the current authority list that should be immediately disabled
until the next authority set changes. This message's initial intention was to cause an immediate suspension of all authority functionality
with the specified authority.

3
implies next epoch descriptor: These messages are only issued on configuration change and in the first block of an epoch. The supplied
configuration data are intended to be used from the next epoch onwards.

 is a varying datatype of the following format:

where is the probability that a slot will not be empty Definition 64. It is encoded as a tuple of two unsigned 64-bit integers
 which are used to compute the rational .

 describes what secondary slot Definition 67, if any, is to be used. It is encoded as one-byte varying datatype:

CM b

CM =b

⎩
⎨
⎧1

2
3

Auth , r(C)
A i

D

Auth C r E +n 1 E +n 1 E +n k

Auth , r(C) E +n k + 1

A i

D

D = {1, (c, 2)}nd

c

c , c nominator denominator c =

c denominator

c nominator

2 nd

s =2nd

⎩
⎨

⎧0 → no secondary slot
1 → plain secondary slot
2 → secondary slot with VRF output

E n

sk n

The BABE constant is the probability that a slot will not be empty and used in the winning threshold calculation (Definition 65). It’s expressed as a
rational, , where is the numerator and is the denominator.x, y() x y

https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/chap-runtime-api#sect-babeapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/sect-block-production#defn-winning-threshold

5.2.1. Primary Block Production Lottery

Definition 66. BABE Slot VRF transcript, output, and proof

A block producer aiming to produce a block during should run the algorithm to identify the slots it is awarded. These
are the slots during which the block producer is allowed to build a block. The session secret key, , is the block producer lottery secret key, and is
the index of the epoch for whose slots the block producer is running the lottery.

Algorithm 6. Block Production Lottery

The Winning threshold denoted by is the threshold that is used alongside the result of Block-Production-Lottery to decide if a block producer
is the winner of a specific slot. is calculated as follows:

where is the total sum of all authority weights in the authority set (Definition 33) for epoch , is the weight of the block author and

 is the BABE constant (Definition 64).

The numbers should be treated as 64-bit rational numbers.

T E n

T E n

A =w w ∈ Auth B

n=1

∑
Auth B∣ C ()∣

(A C()n)

T =E n
1 − 1 − c()

A w

w a

A w E n w a c ∈
0, 1()

The BABE block production lottery requires a specific transcript structure (Definition 185). That structure is used by both primary slots (Block-
Production-Lottery) and secondary slots (Definition 67).

The operators are defined in Definition 186, in Definition 182. The computed outputs, and , are included in the block Pre-Digest
(Definition 74).

t ←1 Transcript ’BABE’()

t ←2 append t , ’slot number’, s(1)

t ←3 append t , ’current epoch’, e (2 i)

t ←4 append t , ’chain randomness’, r(3)

t ←5 append t , ’vrf-nm-pk’, p (4 k)

t ←6 meta-ad t , ’VRFHash’, False(5)

t ←7 meta-ad t , 64 , True(6 le)

h ← prf t , False(7)

d = s ⋅k h

π ← dleq_prove t ,h(7)

dleq_prove d π

E n Block-Production-Lottery
sk n

Algorithm Block-Production-Lottery

Require: sk
 EPOCH-RANDOMNESS()

for do
 VRF()

end for
return A

where is defined in (Definition 76), is defined in Definition 60 , creates the BABE VRF transcript (Definition 66)
and is the epoch index, retrieved from the Runtime (Section C.11.1.). and is the secret key, respectively, the public key of the authority.
For any slot in epoch where (Definition 65), the block producer is required to produce a block.

1: r ← n

2: i := 1 to sc n

3: (π, d) ← r, i, sk
4: A[i] ← (d,π)
5:

6:

Epoch-Randomness sc n VRF
e i s k p k

s n o < T E n

https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-epoch-duration
https://spec.polkadot.network/sect-block-production#defn-babe-vrf-transcript
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-winning-threshold

Definition 67. Secondary Slots

5.3. Slot Number Calculation

It is imperative for the security of the network that each block producer correctly determines the current slot numbers at a given time by regularly
estimating the local clock offset in relation to the network (Definition 69).

Using the median algorithm described in this section, Polkadot achieves synchronization without relying on any external clock source (e.g., through the
NTP or GPS protocol). To stay in synchronization, each producer is therefore required to periodically estimate its local clock offset in relation to the rest
of the network.

This estimation depends on the two fixed parameters (Definition 70) and (Definition 71). These are chosen based on the results of a formal
security analysis, currently assuming a clock drift per day and targeting a probability lower than for an adversary to break BABE in 3 years
with resistance against a network delay up to of the slot time and a BABE constant (Definition 64) of .

All validators are then required to run Median-Algorithm at the beginning of each sync period (Definition 73) to update their synchronization using all
block arrival times of the previous period. The algorithm should only be run once all the blocks in this period have been finalized, even if only
probabilistically (Definition 70). The target slot to which to synchronize should be the first slot in the new sync period.

Definition 68. Slot Offset

INFO

The secondary slots (Definition 67) are running alongside the primary block production lottery and mainly serve as a fallback to in case no
authority was selected in the primary lottery.

Secondary slots work alongside primary slot to ensure consistent block production, as described in Section 5.2.. The secondary assignee of a
block is determined by calculating a specific value, , which indicates the index in the authority set (Definition 33). The corresponding authority in
that set has the right to author a secondary block. This calculation is done for every slot in the epoch, (Definition 60).

where

 is the Epoch randomness (Definition 76).

 is the slot number (Definition 59).

 encodes its inner value to the corresponding SCALE value.

 creates a 256-bit Blake2 hash from its inner value.

 is the lengths of the authority list (Definition 33).

If points to the authority, that authority must claim the secondary slot by creating a BABE VRF transcript (Definition 66). The resulting values
and are then used in the Pre-Digest item (Definition 74). In the case of secondary slots with plain outputs, respectively the Pre-Digest being of
value 2, the transcript respectively the VRF is skipped.

i d

s ∈ sc n

p ← h Enc r, s(SC())

i ←d pmodA l

r

s

Enc …SC()

h …()

A l

i d d

π

DANGER

The calculation described in this section is still to be implemented and deployed: For now, each block producer is required to synchronize its
local clock using NTP instead. The current slot is then calculated by where is defined in Definition 59 and is defined in
Definition 191. That also entails that slot numbers are currently not reset at the beginning of each epoch.

s s = t /Tunix T t unix

k s cq

1s 0.5%
 3

1 c = 0.38

Let and be two slots belonging to epochs and . By Slot-Offset we refer to the function whose value is equal to the number of

slots between and (counting) on the time continuum. As such, we have Slot-Offset .

s i s j E k E l s , s (i j)
s i s j s j s , s =(i i) 0

https://spec.polkadot.network/sect-block-production#defn-relative-synchronization
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Global_Positioning_System
https://spec.polkadot.network/sect-block-production#defn-prunned-best
https://spec.polkadot.network/sect-block-production#defn-chain-quality
https://research.web3.foundation/Polkadot/protocols/block-production/Babe#5-security-analysis
https://research.web3.foundation/Polkadot/protocols/block-production/Babe#5-security-analysis
https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/sect-block-production#algo-median-algorithm
https://spec.polkadot.network/sect-block-production#defn-sync-period
https://spec.polkadot.network/sect-block-production#defn-prunned-best
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-epoch-duration
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-babe-vrf-transcript
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time

It is imperative for the security of the network that each block producer correctly determines the current slot numbers at a given time by regularly
estimating the local clock offset in relation to the network (Definition 69).

Definition 69. Relative Time Synchronization

Algorithm 7. Slot Time

Algorithm 8. Median Algorithm

Definition 70. Pruned Best Chain

Definition 71. Chain Quality

Definition 72. Block Arrival Time

The relative time synchronization is a tuple of a slot number and a local clock timestamp describing the last point at which the slot
numbers have been synchronized with the local clock.

s , t (sync sync)

Algorithm Slot-Time

Require:
return SLOT-OFFSET()

where is the slot number.

s

1: t +sync s , ssync ×T

s

Algorithm Median-Algorithm

Require:

for do
SLOT-OFFSET()

end for
return MEDIAN()

where

 is the sync period used for the estimate.

 is the slot time to estimate.

 is defined in Slot-Time.

 is the slot duration defined in Definition 59.

E, s sync

1: T ←s {}
2: B in E j

3: t ←est
B T +B s , s B sync ×T

4: T ←s T ∪s t est
B

5:

6: T s

E

s sync

Slot-Offset

T

The pruned best chain is the longest selected chain (Definition 7) with the last Blocks pruned. We chose . The last
(probabilistic) finalized block describes the last block in this pruned best chain.

Crk k k = 140

The chain quality represents the number of slots that are used to estimate the local clock offset. Currently, it is set to .

The prerequisite for such a calculation is that each producer stores the arrival time of each block (Definition 72) measured by a clock that is
otherwise not adjusted by any external protocol.

s cq s =cq 3000

https://spec.polkadot.network/sect-block-production#defn-relative-synchronization
https://spec.polkadot.network/sect-block-production#algo-slot-offset
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-state#defn-longest-chain
https://spec.polkadot.network/sect-block-production#defn-block-time

Definition 73. Sync Period

Image 5. An exemplary result of Median Algorithm in first sync epoch with and .

5.4. Production Algorithm

Throughout each epoch, each block producer should run Invoke-Block-Authoring to produce blocks during the slots it has been awarded during that
epoch. The produced block needs to carry the Pre-Digest (Definition 74) as well as the block signature (Definition 75) as Pre-Runtime and Seal digest
items.

Definition 74. Pre-Digest

The block arrival time of block for node formally represented by is the local time of node when node has received block for the

first time. If the node itself is the producer of , is set equal to the time that the block is produced. The index in notation may be

dropped, and B’s arrival time is referred to by when there is no ambiguity about the underlying node.

B j T B
j j j B

j B T B
j

j T B
j

T B

A is an interval at which each validator (re-)evaluates its local clock offsets. The first sync period starts just after the genesis block is released.
Consequently, each sync period starts after . The length of the sync period (Definition 71) is equal to and expressed in the number of

slots.

E 1

E i E i−1 s qc

s =cq 9 k = 1

The Pre-Digest, or BABE header, , is a varying datatype of the following format:

where

1 indicates a primary slot with VRF outputs, 2 a secondary slot with plain outputs and 3 a secondary slot with VRF outputs (Section 5.2.). Plain
outputs are no longer actively used and only exist for backwards compatibility reasons, respectively to sync old blocks.

 is the unsigned 32-bit integer indicating the index of the authority in the authority set (Section 3.3.1.) who authored the block.

P

P =

⎩
⎨
⎧1

2
3

→
→
→

a , s, d,π(id)
a , s(id)

a , s, d,π(id)

a id

https://spec.polkadot.network/sect-block-production#algo-block-production
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#defn-block-signature
https://spec.polkadot.network/sect-block-production#defn-chain-quality
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/chap-sync#sect-authority-set

Algorithm 9. Invoke-Block-Authoring

Definition 75. Block Signature

5.5. Epoch Randomness

At the beginning of each epoch, the host will receive the randomness seed (Definition 76) necessary to participate in the block production
lottery in the next epoch from the Runtime, through the consensus message (Definition 63) in the digest of the first block.

Definition 76. Randomness Seed

5.6. Verifying Authorship Right

When a Polkadot node receives a produced block, it needs to verify if the block producer was entitled to produce the block in the given slot by running
Verify-Authorship-Right. Verify-Slot-Winner runs as part of the verification process, when a node is importing a block.

 is the slot number (Definition 59).

 is VRF output (Block-Production-Lottery respectively Definition 67).

 is VRF proof (Block-Production-Lottery respectively Definition 67).

The Pre-Digest must be included as a digest item of Pre-Runtime type in the header digest (Definition 11) .

s

d

π

H Bd()

Algorithm Invoke-Block-Authoring

Require:
 BLOCK-PRODUCTION-LOTTERY()

for do
WAIT-UNTIL(SLOT-TIME())

if then
 LONGEST-CHAIN()

 BUILD-BLOCK()
ADD-DIGEST-ITEM()
ADD-DIGEST-ITEM()
BROADCAST-BLOCK()

end if
end for

where is the current block tree, is defined in Block-Production-Lottery and appends a
digest item to the end of the header digest (Definition 11).

sk, pk,n,BT
1: A ← sk,n
2: s ← 1 to sc n

3: s

4: (d,π) ← A[s]
5: τ > d

6: C ←Best BT

7: B ←s C Best

8: B , Pre-Runtime,E (BABE),H (B)s id BABE s

9: B , Seal,S s B

10: B s

11:

12:

BT Block-Production-Lottery Add-Digest-Item
H Bd()

The Block Signature is a signature of the block header hash (Definition 12) and defined as

 should be included in as the Seal digest item (Definition 11) of value:

in which, is the seal digest identifier and is the BABE consensus engine unique identifier (Definition 11). The Seal digest item is
referred to as the BABE Seal.

S B

Sig H BSR25519,sk

j
s(h())

m H Bd()

t, id BABE ,m(())

t = 5 id BABE()

E n R E n+1

E n+1

For epoch , there is a 32-byte computed based on the previous epochs VRF outputs. For and , the randomness seed is provided in the
genesis state (Section C.11.1.). For any further epochs, the randomness is retrieved from the consensus message (Definition 63).

E R E E 0 E 1

https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe
https://spec.polkadot.network/sect-block-production#algo-verify-authorship-right
https://spec.polkadot.network/sect-block-production#algo-verify-slot-winner
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe

Algorithm 10. Verify Authorship Right

Algorithm 11. Verify Slot Winner

Algorithm Verify-Authorship-Right

Require:
 SLOT-NUMBER-AT-GIVEN-TIME()
 CURRENT-EPOCH()

 // remove the seal from the digest

if SEAL-ID then
error ‘‘Seal missing''

end if

VERIFY-SIGNATURE()
if and and then

error ‘‘Block producer is equivocating''
end if
VERIFY-SLOT-WINNER()

where

 is the header of the block that’s being verified.

 is ’s arrival time (Definition 72).

 is the digest sub-component (Definition 11) of (Definition 10).

The Seal is the last element in the digest array as described in Definition 11.

 is the type index showing that a digest item (Definition 11) of varying type (Definition 199) is of type Seal.

 is the set of Authority ID for block producers of epoch .

i. is the public session key of the block producer.

 is the pruned block tree (Definition 5).

 is defined in Verify-Slot-Winner.

Head s(B)

1: s ← T B

2: E ←c

3: (D , … ,D) ←1 ∣H (B)∣d
H (B)d

4: D ←s D∣H (B)∣d

5: H (B) ←d D , … ,D (1 ∣H (B)∣−1d
)

6: (id, Sig) ←B Dec (D)SC s

7: id =
8:

9:

10: AuthorID ← AuthorityDirectory [H (B).SingerIndex]E c
BABE

11: AuthorID,H (B), Sig h B

12: ∃B ∈′ BT : H (B) =h H (B)h s =B s B
′ SignerIndex =B SignerIndex B′

13:

14:

15: (d ,π), s , AuthorIDB B B

Head Bs()

T B B

H Bd() Head B()

D s H Bd()

Seal-Id

AuthorityDirectoryE c E c

AuthorId

BT

Verify-Slot-Winner

Algorithm Verify-Slot-Winner

Require:
 CURRENT-EPOCH

 EPOCH-RANDOMNESS()
VERIFY-VRF()
if then

error ‘‘Block producer is not a winner of the slot''
end if

where

1. is defined in Definition 76.

2. is the BABE header defined in Definition 74.

3. is the block lottery result for block (Block-Production-Lottery), respectively the VRF output (Definition 66).

4. is described in Section A.1.3..

5. is the winning threshold as defined in Definition 65.

B

1: E ←c

2: ρ ← c

3: ρ,H (B).(d ,π),H (B).s, cBABE B B BABE

4: d ⩾B τ

5:

6:

Epoch-Randomness

H BBABE()

o, p() B

Verify-VRF

T E n

https://spec.polkadot.network/sect-block-production#defn-block-time
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-variable-type
https://spec.polkadot.network/chap-state#defn-pruned-tree
https://spec.polkadot.network/sect-block-production#algo-verify-slot-winner
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-vrf-transcript
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf
https://spec.polkadot.network/sect-block-production#defn-winning-threshold

5.7. Block Building Process

The block building process is triggered by Invoke-Block-Authoring of the consensus engine which in turn runs Build-Block.

Algorithm 12. Build Block

Algorithm Build-Block

HEAD()

CALL-RUNTIME-ENTRY()
I-D CALL-RUNTIME-ENTRY(INHERENT-DATA)
for I-D do

CALL-RUNTIME-ENTRY()
end for
while not END-OF-SLOT() do

 NEXT-READY-EXTRINSIC()
 CALL-RUNTIME-ENTRY()

if BLOCK-IS-FULL() then
break

end if
if SHOULD-DROP() then

DROP()
end if

 CALL-RUNTIME-ENTRY()
 ADD-SEAL()

end while

where

 is the chain head at which the block should be constructed ("parent").

 is the slot number.

 is defined in Definition 10.

 is defined in Definition 32.

 is defined in Definition 15.

 indicates the end of the BABE slot as defined Median-Algorithm respectively Definition 59.

 indicates picking an extrinsic from the extrinsics queue (Definition 14).

 indicates that the maximum block size is being used.

 determines based on the result whether the extrinsic should be dropped or remain in the extrinsics queue and scheduled

for the next block. The ApplyExtrinsicResult (Definition 230) describes this behavior in more detail.

 indicates removing the extrinsic from the extrinsic queue (Definition 14).

 adds the seal to the block (<<>>) before sending it to peers. The seal is removed again before submitting it to the Runtime.

1: P ←B C Best

2: Head(B) ← H ← H (P),H ← H (P) + 1,H ← ϕ,H ← ϕ,H ← ϕ(p h B i i B r e d)
3: Core_initialize_block, Head(B)
4: ← BlockBuilder_inherent_extrinsics,
5: E in
6: BlockBuilder_apply_extrinsics,E
7:

8: s

9: E ←
10: R ← BlockBuilder_apply_extrinsics,E
11: R

12:

13:

14: R

15: E

16:

17: Head(B) ← BlockBuilder_finalize_block,B
18: B ← B

19:

C Best

s

Head B()

Call-Runtime-Entry

Inherent-Data

End-Of-Slot

Next-Ready-Extrinsic

Block-Is-Full

Should-Drop R

Drop

Add-Seal

https://spec.polkadot.network/sect-block-production#algo-block-production
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-call-into-runtime
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/sect-block-production#algo-median-algorithm
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-state#defn-transaction-queue
https://spec.polkadot.network/chap-runtime-api#defn-rte-apply-extrinsic-result
https://spec.polkadot.network/chap-state#defn-transaction-queue

6. Finality

6.1. Introduction

The Polkadot Host uses GRANDPA Finality protocol to finalize blocks. Finality is obtained by consecutive rounds of voting by the validator nodes.
Validators execute GRANDPA finality process in parallel to Block Production as an independent service. In this section, we describe the different
functions that GRANDPA service performs to successfully participate in the block-finalization process.

Definition 77. GRANDPA Voter

Definition 78. Authority Set Id

Definition 79. GRANDPA State

Definition 80. GRANDPA Vote

Definition 81. Voting Rounds

A GRANDPA Voter, , represented by a key pair where represents an ed25519 private key, is a node running a GRANDPA
protocol and broadcasting votes to finalize blocks in a Polkadot Host-based chain. The set of all GRANDPA voters for a given block B is indicated
by . In that regard, we have [To do: change function name, only call at genesis, adjust V_B over the sections]

where is a function entry point of the Runtime described in Section C.10.1.. We refer to as when there is no
chance of ambiguity.

Analogously, we say that a Polkadot node is a non-voter node for block if it does not own any of the key pairs in .

v K , v (v
pr

id) k v
pr

V B

V = grandpa_authorities B()

grandpa_authorities V B V

B V B

The authority set Id () is an incremental counter which tracks the amount of authority list changes that occurred (Definition 91). Starting with
the value of zero at genesis, the Polkadot Host increments this value by one every time a Scheduled Change or a Forced Change occurs. The
authority set ID is an unsigned 64-bit integer.

id V

The GRANDPA state, , is defined as:

where

: is the set of voters.

: is the authority set ID (Definition 78).

: is the voting round number.

GS

GS = V, id , r{ V }

V

id V

r

A GRANDPA vote or simply a vote for block is an ordered pair defined as

where and are the block hash (Definition 12) and the block number (Definition 10).

B

V B =() H B ,H B(h() i())

H Bh() H Bi()

https://spec.polkadot.network/chap-runtime-api#sect-rte-grandpa-auth
https://spec.polkadot.network/sect-finality#defn-consensus-message-grandpa
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-block-header

Definition 82. Vote Signature

Definition 83. Justification

Definition 84. Finalizing Justification

Definition 85. Equivocation

Voters engage in a maximum of two sub-rounds of voting for each round . The first sub-round is called pre-vote, and the second is called pre-
commit.

By and we refer to the vote cast by voter in round (for block) during the pre-vote and the pre-commit sub-round respectively.

Voting is done by means of broadcasting voting messages (Section 4.8.7.) to the network. Validators inform their peers about the block finalized in
round by broadcasting a commit message (Play-Grandpa-Round).

r

V v
r,pv V v

r,pc v r B

r

 refers to the signature of a voter for a specific message in a round and is formally defined as:

where

: is a byte array containing the message to be signed (Definition 80).

: is an unsigned 64-bit integer is the round number.

: is an unsigned 64-bit integer indicating the authority set Id (Definition 78).

: is either the pre-vote () or the pre-commit () sub-round of voting , as defined in (Definition 81).

Signv i

r,stage

Sign =v i

r,stage Sig msg, r, id ed25519(V)

msg

r

id V

stage stage = pv stage = pc r

The justification for block in round , , is a vector of pairs of the type:

in which either

or is an equivocatory vote.

In all cases, is the signature (Definition 82) of voter broadcasted during a specific (i.e., sub-round)(Definition 81)
of round r. A valid justification must only contain up to one valid vote from each voter and must not contain more than two equivocatory votes
from each voter.

B r J Br,stage()

V B , Sign B , v((′) v i

r,stage(′) id)

B ≥′ B

V Bv i

r,pc(′)

Sign Bv i

r,stage(′) v ∈id V B stage

We say justifies the finalization of for a non-voter node if the number of valid signatures in for is greater

than .

Note that can only be used by a non-voter node to finalize a block. In contrast, a voter node can only be assured of the finality (Definition
94) of block by actively participating in the voting process. That is by invoking Play-Grandpa-Round.

The GRANDPA protocol dictates how an honest voter should vote in each sub-round, which is described by Play-Grandpa-Round. After defining
what constitutes a vote in GRANDPA, we define how GRANDPA counts votes.

J Br,pc() B ≥′ B n J Br,pc() B′

 V 3
2 ∣ B ∣

J Br,pc()
B

Voter equivocates if they broadcast two or more valid votes to blocks during one voting sub-round. In such a situation, we say that is an
equivocator and any vote cast by in that sub-round is an equivocatory vote, and

v v

V Bv
r,stage() v

Er,stage

https://spec.polkadot.network/chap-networking#sect-msg-grandpa
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-vote
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-sign-round-vote
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#algo-grandpa-round

Definition 86. Set of Observed Direct Votes

Definition 87. Set of Total Observed Votes

Definition 88. Set of Total Potential Votes

Definition 89. Current Pre-Voted Block

represents the set of all equivocators voters in sub-round stage of round . When we want to refer to the number of equivocators whose
equivocation has been observed by voter , we refer to it by:

The Polkadot Host must detect equivocations committed by other validators and submit those to the Runtime as described in Section C.10.3..

A vote is invalid if

 does not correspond to a valid block.

 is not an (eventual) descendant of a previously finalized block.

 does not bear a valid signature.

 does no match the current .

 is an equivocatory vote.

r

v

E obs v()
r,stage

V =v
r,stage V B()

H B()

B

M v
r,stage

id V V

V v
r,stage

For validator , the set of observed direct votes for Block in round , formally denoted by is equal to the union of:

set of valid votes cast in round and received by such that .

v B r VD Bobs v()
r,stage()

V v i

r,stage r v V =v i

r,stage V B()

We refer to the set of total votes observed by voter in sub-round stage of round by .

The set of all observed votes by in the sub-round stage of round for block , is equal to all of the observed direct votes cast for

block and all of the ’s descendants defined formally as:

The total number of observed votes for Block in round is defined to be the size of that set plus the total number of equivocator voters:

Note that for genesis state we always have .

v r V obs v()
r,stage

v r B V obs v()
r,stage

B B

V B =obs v()
r,stage() VD B

v ∈V,B<Bi
′

⋃ obs v()
r,stage(′)

B r

V B =obs v()
r,stage() V B +

∣
∣

obs v()
r,stage()

∣
∣

 E

∣
∣

obs v()
r,stage

∣
∣

#V B =obs v()
r,pv () V∣ ∣

Let be the set of voters whose vote in the given stage has not been received. We define the total number of potential votes for Block

 in round to be:

V unobs v()
r,stage

B r

#V B =obs v ,pot()
r,stage () V B +

∣
∣

obs v()
r,stage()

∣
∣

 V +
∣
∣

unobs v()
r,stage

∣
∣ Min V , V − V B − V (

3
1

∣ ∣ ∣ ∣
∣
∣

obs v()
r,stage()

∣
∣

∣
∣

unobs v()
r,stage

∣
∣
)

The current pre-voted block also known as GRANDPA GHOST is the block chosen by GRANDPA-GHOST:B v
r,pv

B =v
r,pv GRANDPA-GHOST r()

https://spec.polkadot.network/chap-runtime-api#sect-grandpaapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/sect-finality#algo-grandpa-ghost

Definition 90. Completable Round

Definition 91. GRANDPA Consensus Message

6.2. Initiating the GRANDPA State

In order to participate coherently in the voting process, a validator must initiate its state and sync it with other active validators. In particular, considering
that voting is happening in different distinct rounds where each round of voting is assigned a unique sequential round number , it needs to determine
and set its round counter equal to the voting round currently undergoing in the network. The mandated initialization procedure for the GRANDPA
protocol for a joining validator is described in detail in Initiate-Grandpa.

The process of joining a new voter set is different from the one of rejoining the current voter set after a network disconnect. The details of this distinction
are described further in this section.

Finally, we define when a voter sees a round as completable, that is, when they are confident that is an upper bound for what is going to
be finalized in this round.

v B v
r,pv

We say that round is completable if and for all :

Note that in practice we only need to check the inequality for those where .

r V +
∣
∣

obs v()
r,pc

∣
∣

E >obs v()
r,pc

 V3
2 B >′ B v

r,pv

 V −
∣
∣

obs v()
r,pc

∣
∣

E −obs v()
r,pc

 V B >
∣
∣

obs v()
r,pc (′)

∣
∣

 V
3
2

∣ ∣

B >′ B v
r,pv

 V B >
∣
∣

obs v()
r,pc (′)

∣
∣ 0

, the consensus message for GRANDPA, is of the following format:

where

is an unsigned 32-bit integer indicating how deep in the chain the announcing block must be before the change is applied.

1
Implies scheduled change: Schedule an authority set change after the given delay of where
is the block where the change is applied. The earliest digest of this type in a single block will be respected, unless a force change is
present, in which case the force change takes precedence.

2

Implies forced change: Schedule a forced authority set change after the given delay of
where is the block where the change is applied. The earliest digest of this type in a block will be respected.

Forced changes are explained further in Section 6.5..

3

Implies on disabled: An index to the individual authority in the current authority list (Definition 33) that should be immediately
disabled until the next authority set changes. When an authority gets disabled, the node should stop performing any authority
functionality from that authority, including authoring blocks and casting GRANDPA votes for finalization. Similarly, other nodes should
ignore all messages from the indicated authority which pertain to their authority role.

4
Implies pause: A signal to pause the current authority set after the given delay of where is a
block where the change is applied. Once applied, the authorities should stop voting.

5
Implies resume: A signal to resume the current authority set after the given delay of where is

the block where the change is applied. Once applied, the authorities should resume voting.

CM g

CM =g

⎩

⎨

⎧1
2
3
4
5

Auth ,N (C delay)
m, Auth ,N (C delay)

A i

N delay

N delay

N delay

N := ∥SubChain(B,B)∥delay
′ B′

N := ∥SubChain(B,m + B)∥delay
′

B′

N := ∥SubChain(B,B)∥delay
′ B′

N := ∥SubChain(B,B)∥delay
′ B′

r v

r r n

https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/sect-finality#sect-finality-forced-changes
https://spec.polkadot.network/chap-sync#defn-authority-list

6.2.1. Voter Set Changes

A GRANDPA voter node which is initiating GRANDPA protocol as part of joining a new authority set is required to execute Initiate-Grandpa. The
algorithm mandates the initialization procedure for GRANDPA protocol.

Voter set changes are signaled by Runtime via a consensus engine message (Section 3.3.2.). When Authorities process such messages they must not
vote on any block with a higher number than the block at which the change is supposed to happen. The new authority set should reinitiate GRANDPA
protocol by executing Initiate-Grandpa.

Algorithm 13. Initiate Grandpa

6.3. Rejoining the Same Voter Set

When a voter node rejoins the network after a disconnect from the voter set and with the condition that there has been no change to the voter set at the
time of the disconnect, the node must continue performing the GRANDPA protocol at the same state as before getting disconnected from the network,
ignoring any possible progress in GRANDPA finalization. Following reconnection, the node eventually gets updated to the current GRANDPA round and
synchronizes its state with the rest of the voting set through the process called Catchup (Section 6.6.1.).

6.4. Voting Process in Round

For each round , an honest voter must participate in the voting process by following Play-Grandpa-Round.

Algorithm 14. Play Grandpa Round

INFO

The GRANDPA round number reset to 0 for every authority set change.

Algorithm Initiate-Grandpa

Input:
LAST-FINALIZED-BLOCK
BEST-FINAL-CANDIDATE

GRANDPA-GHOST
LAST-COMPLETED-ROUND

PLAY-GRANDPA-ROUND()

where is the last block which has been finalized on the chain (Definition 94). is equal to the latest round the voter has observed that
other voters are voting on. The voter obtains this information through various gossiped messages including those mentioned in Definition 94.
is set to 0 if the GRANDPA node is initiating the GRANDPA voting process as a part of a new authority set. This is because the GRANDPA round
number resets to 0 for every authority set change.

r ,B last last

1: ← B last

2: (0) ← B last

3: (0) ← B last

4: ← 0
5: r ←n 1
6: r n

B last r last

r last

r

r v

Algorithm Play-Grandpa-Round

Require: ()
 Current local time

 DERIVE-PRIMARY()
if then

BROADCAST(BEST-FINAL-CANDIDATE())
if BEST-FINAL-CANDIDATE() LAST-FINALIZED-BLOCK then

BROADCAST(BEST-FINAL-CANDIDATE())
end if

end if
RECEIVE-MESSAGES(until Time or is completable)

 BEST-FINAL-CANDIDATE()
 BEST-PREVOTE-CANDIDATE()

BROADCAST()
RECEIVE-MESSAGES(until and Time or is completable)
BROADCAST()

r

1: t ←r,v

2: primary ← r

3: v = primary
4: M (v

r−1,Fin r − 1)
5: r − 1 ⩾
6: M (v

r−1,Prim r − 1)
7:

8:

9: ⩾ t +r v, 2 × T r

10: L ← r − 1
11: N ← r

12: M (N)v
r,pv

13: B ⩾v
r,pv L (⩾ t +r v, 4 × T r)

14: M (B)v
r,pc

v
r,pv

https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#defn-finalized-block

Algorithm 15. Derive Primary

Algorithm 16. Best Final Candidate

Algorithm 17. GRANDPA GHOST

repeat
RECEIVE-MESSAGES()
ATTEMPT-TO-FINALIZE-AT-ROUND()

until is completable and FINALIZABLE() and LAST-FINALIZED-BLOCK BEST-FINAL-CANDIDATE()
PLAY-GRANDPA-ROUND()
repeat

RECEIVE-MESSAGES()
ATTEMPT-TO-FINALIZE-AT-ROUND()

until LAST-FINALIZED-BLOCK BEST-FINAL-CANDIDATE()
if LAST-COMPLETED-ROUND then

LAST-COMPLETED-ROUND
end if

where

 is sampled from a log-normal distribution whose mean and standard deviation are equal to the average network delay for a message to be
sent and received from one validator to another.

 is described in Derive-Primary.

The condition of completablitiy is defined in Definition 90.

 function is explained in Best-Final-Candidate.

 is described in Attempt-To-Finalize-At-Round.

 is defined in Finalizable.

15:

16:

17: r

18: r r ⩾ r − 1
19: r + 1
20:

21:

22: r

23: ⩾ r

24: r >
25: ← r

26:

T

Derive-Primary

Best-Final-Candidate

Attempt-To-Finalize-At-Round r()

Finalizable

Algorithm Derive-Primary

Input:
return

where is the GRANDPA round whose primary is to be determined.

r

1: r mod ∣V∣

r

Algorithm Best-Final-Candidate

Input:
 GRANDPA-GHOST()

if then
return

else

if then
return

else
return

end if
end if

where is defined in Definition 88.

r

1: B ←v
r,pv r

2: r = 0
3: B v

r,pv

4:

5: C ← {B ∣B ⩽′ ′ B ∣#V (B) >v
r,pv

obv(v),pot
r,pc ′

 ∣V∣}3
2

6: C = ϕ

7: B v
r,pv

8:

9: E ∈ C : H (E) =n max H (B)∣B ∈ C(n
′ ′)

10:

11:

#V obv v ,pot()
r,pc

Algorithm GRANDPA-GHOST

Input:
if then

r

1: r = 0

https://spec.polkadot.network/sect-finality#algo-derive-primary
https://spec.polkadot.network/sect-finality#defn-grandpa-completable
https://spec.polkadot.network/sect-finality#algo-grandpa-best-candidate
https://spec.polkadot.network/sect-finality#algo-attempt-to%E2%80%93finalize
https://spec.polkadot.network/sect-finality#algo-finalizable
https://spec.polkadot.network/sect-finality#defn-total-potential-votes

Algorithm 18. Best PreVote Candidate

Algorithm 19. Attempt To Finalize At Round

Algorithm 20. Finalizable

else
 BEST-FINAL-CANDIDATE()

if then

else

end if
end if
return

where

 is the last block which has been finalized on the chain (Definition 94).

 is defined in Definition 87.

2: G ← B last

3:

4: L ← r − 1
5: G = {∀B > L∣#V (B) ⩾obs(v)

r,pv
 ∣V∣}3

2

6: G = ϕ

7: G ← L

8:

9: G ∈ G∣H (G) =n max H (B)∣∀B ∈ G(n)
10:

11:

12: G

B last

#V Bobs v()
r,pv ()

Algorithm Best-PreVote-Candidate

Input:
 GRANDPA-GHOST()

if RECEIVED(and) then

else

end if

r

1: B ←v
r,pv r

2: M (B))v primary

r,prim B ⩾v
r,pv B > L

3: N ← B

4:

5: N ← B v
r,pv

6:

Algorithm Attempt-To-Finalize-At-Round

Require: ()
 LAST-FINALIZED-BLOCK

 BEST-FINAL-CANDIDATE()
if and then

LAST-FINALIZED-BLOCK

if RECEIVED-MESSAGES then
BROADCAST()
return

end if
end if

r

1: L ←
2: E ← r

3: E ⩾ L V (E) >obs(v)
r,pc 2/3∣V∣

4: ← E

5: M (E) ∈v
r,Fin /

6: M (E)v
r,Fin

7:

8:

9:

Algorithm Finalizable

Require: ()
if is not Completable then

return False
end if

 GRANDPA-GHOST()
if then

return False
end if

 BEST-FINAL-CANDIDATE()
if and BEST-FINAL-CANDIDATE() then

return True
else

return False

r

1: r

2:

3:

4: G ← J (B)r,pv

5: G = ϕ

6:

7:

8: E ←r r

9: E =r ϕ r − 1 ⩽ E ⩽r G

10:

11:

12:

https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#defn-observed-votes

Note that we might not always succeed in finalizing our best candidate due to the possibility of equivocation. We might even not finalize anything in a
round (although Play-Grandpa-Round prevents us from moving to the round before finalizing the best final candidate of round) The
example in Definition 92 serves to demonstrate a situation where the best final candidate of a round cannot be finalized during its own round:

Definition 92. Unfinalized Candidate

6.5. Forced Authority Set Changes

In a case of emergency where the Polkadot network is unable to finalize blocks, such as in the event of a mass validator outage, the Polkadot
governance mechanism must enact a forced change, which the Host must handle in a specific manner. Given that in such a case, finality cannot be
relied on, the Host must detect the forced change (Definition 91) in a (valid) block and apply it to all forks.

The , which is specified by the governance mechanism, defines the starting block at which is applied. This provides some degree of

probabilistic consensus to the network with the assumption that the forced change was received by most participants and that finality can be continued.

Image 6. Applying a scheduled change

end if

where the condition for completability is defined in Definition 90.

13:

r + 1 r − 1

Let us assume that we have 100 voters and there are two blocks in the chain (). At round 1, we get 67 pre-votes for and at least one
pre-vote for which means that .

Subsequently, potentially honest voters who could claim not seeing all the pre-votes for but receiving the pre-votes for would pre-commit to
. In this way, we receive 66 pre-commits for and 1 pre-commit for . Henceforth, we finalize since we have a threshold commit (67

votes) for .

At this point, though, we have as and .

However, at this point, the round is already completable as we know that we have as an upper limit on what
we can finalize and nothing greater than can be finalized at . Therefore, the condition of Play-Grandpa-Round is satisfied and we must
proceed to round 2.

Nonetheless, we must continue to attempt to finalize round 1 in the background as the condition of Attempt-To-Finalize-At-Round has not been
fulfilled.

This prevents us from proceeding to round 3 until either:

We finalize in round 2, or

We receive an extra pre-commit vote for in round 1. This will make it impossible to finalize in round 1, no matter to whom the

remaining pre-commits are going to be cast for (even with considering the possibility of 1/3 of voter equivocating) and therefore we have
.

Both scenarios unblock Play-Grandpa-Round, albeit in different ways: the former
with increasing the and the latter with decreasing .

B <1 B 2 B 2

B 1 GRANDPA-GHOST 1 =() B2

B 2 B 1

B 1 B 1 B 2 B 1

B 1

Best-Final-Candidate r =() B 2 #V B =obs v ,pot()
r,stage (2) 67 2 > 1

GRANDPA-GHOST 1 =() B 2

B 2 r = 1

B 2

B 1 B 2

Best-Final-Candidate r =() B 1

Last-Finalized-Block ≥ Best-Final-Candidate r − 1()
Last-Finalized-Block Best-Final-Candidate r − 1()

m ∈ CM g N delay

https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-unfinalized-candidate
https://spec.polkadot.network/sect-finality#defn-consensus-message-grandpa
https://spec.polkadot.network/sect-finality#defn-grandpa-completable
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#algo-attempt-to%E2%80%93finalize
https://spec.polkadot.network/sect-finality#algo-grandpa-round

Image 7. Applying a forced change

6.6. Block Finalization

Definition 93. Justified Block Header

Definition 94. Finalized

The Justified Block Header is provided by the consensus engine and presented to the Polkadot Host for the block to be appended to the
blockchain. It contains the following parts:

block_header the complete block header (Definition 10) and denoted by .

justification: as defined by the consensus specification indicated by as defined in Definition 83.

authority Ids: This is the list of the IDs of authorities which have voted for the block to be stored and is formally referred to as . An
authority ID is 256-bit.

Head B()

Just B()

A B()

A Polkadot relay chain node should consider block as finalized if any of the following criteria hold for :n B B ≥′ B

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/sect-finality#defn-grandpa-justification

6.6.1. Catching up

When a Polkadot node (re)joins the network, it requests the history of state transitions in the form of blocks, which it is missing.

Nonetheless, the process is different for a GRANDPA voter node. When a voter node joins the network, it needs to gather the justification (Definition 83)
of the rounds it has missed. Through this process, they can safely join the voting process of the current round, on which the voting is taking place.

6.6.1.1. Sending the catch-up requests

When a Polkadot voter node has the same authority list as a peer voter node who is reporting a higher number for the finalized round field, it should
send a catch-up request message (Definition 53) to the reporting peer. This will allow the node to to catch up to the more advanced finalized round,
provided that the following criteria hold:

The peer node is a GRANDPA voter, and:

The last known finalized round for the Polkadot node is at least two rounds behind the finalized round for the peer.

6.6.1.2. Processing the catch-up requests

Only GRANDPA voter nodes are required to respond to the catch-up requests. Additionally, it is only GRANDPA voters who are supposed to send catch-
up requests. As such GRANDPA voters could safely ignore the catch-up requests from non-voter nodes. When a GRANDPA voter node receives a
catch-up request message, it needs to execute Process-Catchup-Request. Note: a voter node should not respond to catch-up requests for rounds that
are actively being voted on. Those are the rounds for which Play-Grandpa-Round is not concluded.

Algorithm 21. Process Catchup Request

.

It receives a message in which justifies the finalization (Definition 83).

It receives a block data message for with (Definition 93) which justifies the finalization.

for:

Any round if the node is not a GRANDPA voter.

Only for round for which the node has invoked Play-Grandpa-Round and round if is a GRANDPA voter and has already caught
up to its peers according to the process described in Section Section 6.6.1..

Note that all Polkadot relay chain nodes are supposed to process GRANDPA commit messages regardless of their GRANDPA voter status.

V B >obs n()
r,pc (′) V 3

2 ∣ B′ ∣

M Bv
r,Fin(′) J Br()

B′ Just B(′)

r n

r n r + 1 n

Algorithm Process-Catchup-Request

Input:
if then

error ‘‘Catching up on different set''
end if
if then

error ‘‘Requesting catching up from a non-peer''
end if
if LAST-COMPLETED-ROUND then

error ‘‘Catching up on a round in the future''
end if
SEND()

where

 is the catch-up message received from peer (Definition 53).

 (Definition 78) is the voter set id with which the serving node is operating

 is the round number for which the catch-up is requested for.

 is the set of immediate peers of node .

 is initiated in Initiate-Grandpa and gets updated by Play-Grandpa-Round.

M (id , r)i,v
Cat-q

V

1: M (id , r).id =i,v
Cat-q

V V idV
2:

3:

4: i ∈/ P
5:

6:

7: r >
8:

9:

10: i,M (id , r)v,i
Cat-s

V

M id , ri,v
Cat−q(V) i

id V

r

P v

Last-Completed-Round

https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-request-msg
https://spec.polkadot.network/sect-finality#algo-process-catchup-request
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/sect-finality#defn-justified-block-header
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-request-msg
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/sect-finality#algo-grandpa-round

6.6.1.3. Processing catch-up responses

A Catch-up response message contains critical information for the requester node to update their view on the active rounds that are being voted on by
GRANDPA voters. As such, the requester node should verify the content of the catch-up response message and subsequently updates its view of the
state of the finality of the Relay chain according to Process-Catchup-Response.

Algorithm 22. Process Catchup Response

6.7. Bridge design (BEEFY)

The BEEFY (Bridge Efficiency Enabling Finality Yielder) is a secondary protocol to GRANDPA to support efficient bridging between the Polkadot
network (relay chain) and remote, segregated blockchains, such as Ethereum, which were not built with the Polkadot interchain operability in mind.
BEEFY’s aim is to enable clients to efficiently follow a chain that has GRANDPA finality, a finality gadget created for Substrate/Polkadot ecosystem. This
is useful for bridges (e.g., Polkadot->Ethereum), where a chain can follow another chain and light clients suitable for low storage devices such as mobile
phones.

The protocol allows participants of the remote network to verify finality proofs created by the Polkadot relay chain validators. In other words: clients in
the target network (e.g., Ethereum) can verify that the Polkadot network is at a specific state.

Storing all the information necessary to verify the state of the remote chain, such as the block headers, is too expensive. BEEFY stores the information
in a space-efficient way, and clients can request additional information over the protocol.

6.7.1. Motivation

A client could just follow GRANDPA using GRANDPA justifications, sets of signatures from validators. This is used for some substrate-substrate bridges
and in light clients such as the Substrate Connect browser extension. GRANDPA was designed for fast and secure finality. Certain design decisions, like
validators voting for different blocks in a justification and using ED25519 signatures, allow fast finality. However, GRANDPA justifications are large and

 is the catch-up response (Definition 54).M id , rv,i
Cat−s(V)

Algorithm Process-Catchup-Response

Input:

if then
error ‘‘Catching up on different set''

end if
if LEADING-ROUND then

error ‘‘Catching up in to the past''
end if
if is not valid then

error ‘‘Invalid pre-vote justification''
end if
if is not valid then

error ‘‘Invalid pre-commit justification''
end if

 GRANDPA-GHOST()
if then

error ‘‘GHOST-less Catch-up''
end if
if is not completable then

error ‘‘Catch-up round is not completable''
end if
if justifies finalization then

error ‘‘Unjustified Catch-up target finalization''
end if
LAST-COMPLETED-ROUND
if then

PLAY-GRANDPA-ROUND()
end if

where is the catch-up response received from node (Definition 54).

M (id , r)v,i
Cat-s

V
1: M (id , r).id , r, J (B), J (B),H (B),H (B) ←v,i

Cat-s
V V

r,pv r,pc
h

′
i

′ Dec (M (id , r)SC v,i
Cat−s

V
2: M (id , r).id =v,i

Cat-s
V V id V

3:

4:

5: r ⩽
6:

7:

8: J (B)r,pv

9:

10:

11: J (B)r,pc

12:

13:

14: G ← J (B)r,pv

15: G = ϕ

16:

17:

18: r

19:

20:

21: J (B)r,pc B′

22:

23:

24: ← r

25: i ∈ V
26: r + 1
27:

M id , rv,i
Cat−s(V) v

https://spec.polkadot.network/sect-finality#algo-process-catchup-response
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-response-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-response-msg

are expensive to verify on other chains like Ethereum that do not support some cryptographic signature schemes. Thus, BEEFY adds an extra layer of
finality that allows lighter bridges and clients for Polkadot.

To summarise, the goals of BEEFY are:

Allow customization of signature schemes to adapt to different target chains.

Minimize the size of the finality proof and the effort required by a light client to follow finality.

Unify data types and use backward-compatible versioning so that the protocol can be extended (additional payload, different signature schemes)
without breaking existing light clients.

6.7.2. Protocol Overview

Since BEEFY runs on top of GRANDPA, similarly to how GRANDPA is lagging behind the best produced (non-finalized) block, BEEFY finalized block
lags behind the best GRANDPA (finalized) block.

The BEEFY validator set is the same as GRANDPA's. However, they might be using different types of session keys to sign BEEFY messages.

From a single validator perspective, BEEFY has at most one active voting round.

Since GRANDPA validators are reaching finality, we assume they are online and well-connected and have a similar view of the state of the
blockchain.

BEEFY consists of two components:

a. Consensus Extension on GRANDPA finalization that is a voting round.

The consensus extension serves to have a smaller consensus justification than GRANDPA and alternative cryptography, which helps the light client side
of the BEEFY protocol described below.

b. An efficient protocol for convincing on-chain/ off-chain light clients about the finality vote.

In the BEEFY light-client protocol, a full node or bridge relayer (prover) wants to convince a light client (verifier, e.g., a smart contract implemented on
the target chain) of the outcome of BEEFY votes. The prover has access to all voting data from the BEEFY voting round. The prover may generate a
single-shot proof (for e.g. using SNARKS) and send it to the verifier or they may engage in an interactive protocol with several rounds of
communication.

6.7.3. Preliminaries

Definition 95. BEEFY Session Keys

Validators use an ECDSA key scheme for signing Beefy messages. This is different from schemes like sr25519 and ed25519 , which are commonly
used in Substrate for other components like BABE, and GRANDPA. The most noticeable difference is that an ecdsa public key is 33 bytes long,
instead of 32 bytes for a sr25519 based public key. As a consequence, the AccountId (32-bytes) matches the PublicKey for other session keys,
but note that it's not the case for BEEFY.

6.7.4. Merkle Mountain Ranges

Definition 96. Merkle Mountain Ranges

BEEFY session key pair is a secp256k1 key pair which the BEEFY authority node uses to sign the BEEFY signed

commitments (justifications).

sk , pk (j
B

j
B) P j

Merkle Mountain Ranges, MMR, are used as an efficient way to send block headers and signatures to light clients. Merkle Mountain Ranges
(MMR) is an improvement of the traditional Merkle tree data structure. Just like a Merkle tree, an MMR is a binary tree where each leaf node
represents a data element and each non-leaf node is the hash of its child nodes. The key difference between a traditional Merkle tree and a MMR
lies in the way nodes are organized. In traditional Merkle trees, whenever a leaf node is appended or removed, the tree must be rebuilt and the
hashes of the non-leaf nodes must be recalculated. The overhead of recomputing the hashes up to the root makes traditional Merkle unsuitable for
handling dynamic data. The MMR is designed to optimize the appending and removal of elements without requiring a complete rebuild of the tree,
which makes it more efficient to handle growing lists of leaf nodes.

MMR structure

A distinguished feature of this process is that whenever new leaf nodes are added to the tree, the earlier hash computations of peaks are reused,
making new leaf nodes less expensive to insert and to prove (i.e., to verify the integrity of leaf data).

Definition 98. MMR operations

Definition 99. Payload

A MMR structure can be seen as a list of perfectly balanced binary sub-trees in descending order of height. It is a strictly append-only structure
where nodes are added from left to right, such that a parent node is added as soon as two children exist. The following representation shows a
MMR with 11 elements, 7 leaf nodes and 4 non-leaf nodes, where the value of each node corresponds to the order in which it was inserted into the
tree.

 7

 / \

 / \

 / \

 3 6 10

 / \ / \ / \

 / \ / \ / \

1 2 4 5 8 9 11

Definition 97. Merkle Mountain Ranges root (MMR-root)

An MMR does not have a single root by design, as a conventional Merkle tree. Every sub-tree has a separate sub-root, which we refer to as the
peak of the sub-tree. Bagging the peaks is the process used for hashing the peaks in order to compute the MMR-root . It is important to define
the order in which the peaks are hashed to ensure that a given sub-set of peaks will always derive a unique MMR-root . Here we state that peaks
are merged from right to left and bagged via .

Therefore, given an MMR tree with n peaks ordered in decreasing order of height, the MMR-root of the tree is calculated as follows.

where

: represents the list of current peaks in decreasing order of heights.

: corresponds to the 256-bit Keccak hash function used to merge the peaks.

hash(right, left)

MMR root = hash(p +1 hash(p +2 hash(p +3 ... + hash(p −n 1 + p))))n

p , p , ..., p 1 2 n

hash

Here are the basic operations we should be able to perform on the MMR:

Append Leaf Node (appendData):

Signature: append(data: T) -> None

Description: appends a new leaf element with the provided data to the MMR.

Create MMR root (bagPeaks):

Signature: baggingPeaks(peaksIndexes: List[int]) -> str

Description: creates the single MMR root based on the list of peaks, and returns the hash string of the MMR root corresponding to the
current state of the tree.

Verify Node (verifyProof):

Signature: verifyNode(nodeHash: str, requiredProofNodes: List[str], MMRroot: str) -> bool

Description: verifies if the given node hash can be proved based on the list of required proof nodes and the MMR root hash.

Payload: is the Merkle root of the MMR generated where the leaf data contains the following fields for each block:

LeafVersion: a byte indicating the current version number of the Leaf Format. The first 3 bits are for major versions and the last 5 bits are for
minor versions.

BeefyNextAuthoritySetInfo: It is a tuple consisting of:

https://spec.polkadot.network/chap-host-api#sect-finality#id-ext_hashing_keccak_256

Definition 100. Signed Commitment

Definition 101. Witness Data

Definition 102. Light Client

Definition 103. Relayer

6.7.5. Voting on Payloads

The Polkadot Host signs the MMR payload (Definition 99) and gossips it as part of a vote (Definition 56) to its peers on every new finalized block. The
Polkadot Host uses ECDSA for signing the payload since Ethereum has better compatibility for it compared to SR25519 or ED25519.

6.7.6. Committing Witnesses

The relayer (Definition 103) participates in the Polkadot network by collecting the gossiped votes (Definition 56). Those votes are converted into the
witness data structure (Definition 101). The relayer saves the data on the chain of the remote network. The occurrence of saving witnesses on remote
networks is undefined.

6.7.7. Requesting Signed Commitments

A light client (Definition 102) fetches the Signed Commitment Witness (Definition 101) from the chain. Once the light client knows which validators
apparently voted for the specified payload, it needs to request the signatures from the relayer to verify whether the claims are actually true. This is
achieved by requesting signed commitments (Definition 57).

How those signed commitments are requested by the light client and delivered by the relayer varies among networks or implementations.

Definition 104. BEEFY Consensus Message

ValidatorSetID

Len (u32): length of the validator set

Merkle Root of the list of Next Beefy Authority Set (ECDSA public keys). The exact format depends on the implementation.

Parent Block number and Parent Block Hash.

Extra Leaf Data: Currently the Merkle root of the list of (ParaID, ParaHeads)

Signed Commitment: commitment is a tuple of (payload, Block Number, ValidatorSetID) . A signed commitment is a tuple
(commitment, signatures) , where signatures is a list of optional signatures of the validator set on the SCALE encoded commitment . Note
that the number of signatures in signatures may be less than the length of the Validator Set.

Signed Commitment Witnesses contains the commitment and an array indicating which validator of the Polkadot network voted for the payload
(but not the signatures themselves). The indicators of which validator voted for the payload are just claims and provide no proof. It also contains
the signature of one validator on the commitment, which is used only by the subsampling-based Light Clients. The network message is defined in
Definition 58 and the relayer saves it on the chain of the remote network.

A light client is an abstract entity in a remote network such as Ethereum. It can be a node or a smart contract with the intent of requesting finality
proofs from the Polkadot network. A light client reads the witness data (Definition 101 from the chain, then requests the signatures directly from the
relayer in order to verify those.

A relayer (or "prover") is an abstract entity that takes finality proofs from the Polkadot network and makes those available to the light clients. The
relayer attempts to convince the light clients that the finality proofs have been voted for by the Polkadot relay chain validators. The relayer
operates off-chain and can for example be a node or a collection of nodes.

https://spec.polkadot.network/sect-finality#defn-beefy-payload
https://spec.polkadot.network/chap-networking#defn-msg-beefy-gossip
https://spec.polkadot.network/sect-finality#defn-beefy-relayer
https://spec.polkadot.network/chap-networking#defn-msg-beefy-gossip
https://spec.polkadot.network/sect-finality#defn-beefy-witness-data
https://spec.polkadot.network/sect-finality#defn-beefy-light-client
https://spec.polkadot.network/sect-finality#defn-beefy-witness-data
https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-signed-commitment
https://spec.polkadot.network/chap-networking#defn-grandpa-beefy-signed-commitment-witness
https://spec.polkadot.network/sect-finality#defn-beefy-witness-data

6.7.8. Consensus Mechanism

Role of various Actors in BEEFY:

Validators are expected to additionally:

i. Produce & broadcast vote for the current round.

Regular nodes perform the following tasks:

i. Receive & validate votes for the current round and broadcast them to their peers.

ii. Receive & validate BEEFY Justifications and broadcast them to their peers.

iii. Return BEEFY Justifications for Mandatory Blocks on demand.

iv. Optionally return BEEFY Justifications for non-mandatory blocks on demand.

A round is an attempt by BEEFY validators to produce a BEEFY Justification. Round number is simply defined as a block number the validators are
voting for, or to be more precise, the Commitment for that block number. Round ends when the next round is started, which may happen when one of
the events occur:

1. Either the node collects 2/3rd + 1 valid votes for that round.

2. Or the node receives a BEEFY Justification for a block greater than the current best BEEFY block.

In both cases the node proceeds to determine the new round number using "Round Selection" procedure.

Both kinds of actors are expected to fully participate in the protocol ONLY IF they believe they are up-to-date with the rest of the network, i.e. they are
fully synced. Before this happens, the node should continue processing imported BEEFY Justifications and votes without actively voting themselves.

Round Selection

Every node (both regular nodes and validators) determines locally what it believes the current round number is. The choice is based on their knowledge
of:

1. Best GRANDPA finalized block number (best_grandpa).

2. Best BEEFY finalized block number (best_beefy).

3. Starting block of the current session (session_start).

Session means a period of time (or rather a number of blocks) where the validator set (keys) does not change. Session are synonymous to epochs
(Definition 59). Since the BEEFY authority set is the same as the GRANDPA authority set for any GRANDPA finalized block, the session boundaries for
BEEFY are exactly the same as the ones for GRANDPA.

We define two kinds of blocks from the perspective of the BEEFY protocol:

1. Mandatory Blocks

2. Non-mandatory Blocks

Mandatory blocks are the ones that MUST have BEEFY justification. That means that the validators will always start and conclude a round at mandatory
blocks. For non-mandatory blocks, there may or may not be a justification and validators may never choose these blocks to start a round.

, the consensus message for BEEFY, is of the following format:

where

1
implies that the remote authorities have changed. is the array of the new BEEFY authorities’s public keys and is the identifier of
the remote validator set.

2 implies on disabled: an index to the individual authority in that should be immediately disabled until the next authority change.

3 implies MMR root: a 32-byte array containing the MMR root payload.

CM beefy

CM =beefy

⎩
⎨
⎧1

2
3

V ,V (B i)
A i

R

V B V i

V B

https://spec.polkadot.network/sect-block-production#defn-epoch-slot

Every first block in each session is considered a mandatory block. All other blocks in the session are non-mandatory, however validators are
encouraged to finalize as many blocks as possible to enable lower latency for light clients and hence end users. Since GRANDPA is considering
session boundary blocks as mandatory as well, session_start block will always have both GRANDPA and BEEFY Justification.

Definition 105. BEEFY Round NUmber

Intuitively, the next round number should be the oldest mandatory block without a justification, or the highest GRANDPA-finalized block, whose block
number difference with best_beefy block is a power of two. The mental model for round selection is to first finalize the mandatory block and then to
attempt to pick a block taking into account how fast BEEFY catches up with GRANDPA. In case GRANDPA makes progress, but BEEFY seems to be
lagging behind, validators are changing rounds less often to increase the chance of concluding them.

As mentioned earlier, every time the node picks a new round_number (and the validator casts a vote) it ends the previous one, no matter if finality was
reached (i.e. the round concluded) or not. Votes for an inactive round should not be propagated.

Note that since BEEFY only votes for GRANDPA-finalized blocks, session_start here actually means: "the latest session for which the start of is
GRANDPA-finalized", i.e. block production might have already progressed, but BEEFY needs to first finalize the mandatory block of the older session.

While it is useful to finalize non-mandatory blocks frequently, in good networking conditions BEEFY may end up finalizing each and every block
GRANDPA finalized block. Practically, with short block times, it's going to be rare and might be excessive, so it's suggested for implementations to
introduce a min_delta parameter which will limit the frequency with which new rounds are started. The affected component of the formula would be:
best_beefy + MAX(min_delta, NEXT_POWER_OF_TWO(...)) , so we start a new round only if the the power-of-two component is greater than the
min delta. Note that if round_number > best_grandpa the validators are not expected to start any round.

6.7.9. BEEFY Light Client

A light client following BEEFY could request signatures to be checked, where is the number of validators on Polkadot. Assuming a
maximum of malicious validators, the light client can be certain of the payloads finality if all the signatures it requested are valid.

6.7.10. Subsampling Light Client

It is an interactive protocol between the light-client (verifier) and the relayer (prover) to convince the Light Client with a high probability that the payload
sent by the prover is signed by honest Polkadot validators. The protocol prioritizes efficiency and tries to minimize the number () of signature
checks (computationally expensive operations) on the light client side.

6.7.11. APK Proof based Light Clients

TODO: Section on using Aggregatable Signatures for efficient verification on light clients.

The formula for determining the current round number is defined as:

where:

M is 1 if the mandatory block in the current session is already finalized and 0 otherwise.

NEXT_POWER_OF_TWO(x) returns the smallest number greater or equal to x that is a power of two.

round_number =

 (1 - M) * session_start

 + M * Minimum(next_session_start, (best_beefy + NEXT_POWER_OF_TWO((best_grandpa - best_beefy + 1) /

2)))

N/3 + 1 N

N/3

<< N/3

7. Light Clients

7.1. Requirements for Light Clients

We list the requirements of a Light Client categorized along the three dimensions of Functionality, Efficiency, and Security.

Functional Requirements:

i. Synchronize with full nodes to obtain the latest finalized Block Header Definition 10, and in turn, the state trie root.

ii. (Optional) Verify validity of runtime transitions (Section 2.6.).

iii. Make queries for data at the latest block height or across a range of blocks.

iv. Append extrinsics (Section 2.3.) to the blockchain via full nodes.

Efficiency Requirements:

i. Efficient bootstrapping and syncing: initializations and update functions of the state have tractable computation and communication complexity
and grows at most linearly with the chain size. Generally, the complexity is proportional to the GRANDPA validator set change.

ii. Querying operations happen by requesting the key-value pair from a full node.

iii. Further, verifying the validity of responses by the full node is logarithmic in the size of the state.

Security Requirements:

i. Secure bootstrapping and Synchronizing: The probability that an adversarial full node convinces a light client of a forged blockchain state is
negligible.

ii. Secure querying: The probability that an adversary convinces a light client to accept a forged account state is negligible.

iii. Assure that the submitted extrinsics are appended in a successor block or inform the user in case of failure.

Polkadot Specific Requirements:

i. The client MUST be able to connect to a relay chain using chain state.

ii. The client MUST be able to retrieve the checkpoint state from a trusted source to speed up initialization.

iii. The client MUST be able to subscribe/unsubscribe to/from any polkadot-spec-conformant relay chain (Polkadot, Westend, Kusama)

iv. The client MUST be able to subscribe/unsubscribe to/from parachains that do not use custom protocols or cryptography methods other than
those that Polkadot, Westend and Kusama use.

v. The client MUST support the following RPC methods: rpc_methods , chainHead_unstable_follow , chainHead_unstable_unfollow ,
chainHead_unstable_unpin , chainHead_unstable_storage , chainHead_unstable_call chainHead_unstable_stopCall .
transaction_unstable_submitAndWatch , and transaction_unstable_unwatch

vi. The client MUST support the @substrate/connect connection extension protocol: ToApplicationError , ToApplicationChainReady ,
ToApplicationRpc , ToExtensionAddChain , ToExtensionAddWellKnownChain , ToExtensionRpc , ToExtensionRemoveChain .

7.2. Warp Sync for Light Clients

Warp sync (Section 4.8.5.) only downloads the block headers where authority set changes occurred, so-called fragments (Definition 46), and by
verifying the GRANDPA justifications (Definition 83). This protocol allows nodes to arrive at the desired state much faster than fast sync. Warp sync is
primarily designed for Light Clients. Although, warp sync could be used by full nodes, the sync process may lack information to cater to complete
functionality set of full nodes.

For light clients, it is too expensive to download the state (approx. 550MB) to respond to queries. Rather, the queries are submitted to the Full node, and
only the response of the full node is validated using the hash of the state root. Requests for warp sync are performed using the /dot/sync/warp

Request-Response substream, the corresponding network messages are detailed in Section 4.7..

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#sect-runtime-interaction
https://spec.polkadot.network/chap-state#sect-extrinsics
https://github.com/paritytech/json-rpc-interface-spec
https://github.com/paritytech/substrate-connect/tree/main/packages/connect-extension-protocol
https://spec.polkadot.network/chap-networking#sect-msg-warp-sync
https://spec.polkadot.network/chap-networking#defn-warp-sync-proof
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#sect-protocols-substreams

Light clients base their trust in provided snapshots and the ability to slash grandpa votes for equivocation for the period they are syncing via warp sync.
Full nodes and above, in contrast, verify each block individually.

In theory, the warp sync process takes the Genesis Block as input and outputs the hash of the state trie root at the latest finalized block. This root
hash acts as proof to further validate the responses to queries by the full node. The warp sync works by starting from a trusted specified block (e.g.,
from a snapshot) and verifying the block headers only at the authority set changes.

Eventually, the light client verifies the finality of the block returned by a full node to ensure that the block is indeed the latest finalized block. This entails
two things:

1. Check the authenticity of GRANDPA Justifications messages from Genesis to the last finalized block.

2. Check the timestamp of the last finalized block to ensure that no other blocks might have been finalized at a later timestamp.

We outline the warp sync process, abstracting out details of verifying the finality and how the full node to sync with is selected.

Algorithm 23. Warp Sync Light Clients

The warp syncing process is closely coupled with the state querying procedure used by the light client. We outline the process of querying the state by a
light client and validating the response.

Algorithm 24. Querying State Light Clients

CAUTION

Long-Range Attack Vulnerabilities: Warp syncing is particularly vulnerable to what is called long-range attacks. The authorities allowed to
finalize blocks can generate multiple proofs of finality for multiple different blocks of the same height. Hence, they can finalize more than one chain
at a time. It is possible for two-thirds of the validators that were active at a certain past block N to collude and decide to finalize a different block N',
even when N has been finalized for the first time several weeks or months in the past. When a client then warp syncs, it can be tricked to consider
this alternative block N' as the finalized one. However, in practice, to mitigate Long-Range Attacks, the starting point of the warp syncing is not too
far in the past. How far exactly depends on the logic of the runtime of the chain. For example, in Polkadot, the starting block for the sync should be
at max 28 days old to be within the purview of the slashing period for misbehaving nodes. Hence, even though, in theory, warp sync can start from
Genesis Block, it is not advised to implement the same in practice.

Algorithm Warp-Sync-Light-Clients

Input: BlockHeader startblock, the initial block to start the sync. May not be the Genesis Block.

Output: CommitmentRootHash , State Tries Root hash of the latest finalized Block.
FULLNODE SelectFullNode
LATESTBLOCKHEADER, GRANDPAJUSTIFICATIONS SyncWithNode(FULLNODE)
ISVERIFIED verifyAuthoritySetChange(GRANDPAJUSTIFICATIONS) verifyFinality(LATESTBLOCKHEADER)
if ISVERIFIED then

 getCommitmentRootHash(LATESTBLOCKHEADER)
end if

Abstraction of Warp Sync and verification of the latest block’s finality.

: Determines the full node that the light client syncs with.

: Returns the header of the latest finalized block and a list of Grandpa Justifications by the full node.

: Verification algorithm which checks the authenticity of the header only at the end of an era where the authority

set changes iteratively until reaching the latest era.

: Verifies the finality of the latest block using the Grandpa Justifications messages.

root

1: ←
2: ←
3: ← ∧
4:

5: return SOME

6:

7: throw ERROR

SelectFullNode

SyncSithNode

verifyAuthoritySetChange

verifyF inalty

Algorithm Querying-State-Light-Clients

Input: Query q, BlockHeight h, CommitmentRootHash

Output: Maybe Result
(,)
if then

root

res

1: res π ← QueryFullNode(q,h)
2: validityCheck (res,π)root

7.3. Runtime Environment for Light Clients

Technically, though a runtime execution environment is not necessary to build a light client, most clients require interacting with the Runtime and the
state of the blockchain for integrity checks at the minimum. One can imagine an application scenario like an on-chain light client which only listens to the
latest state without ever adding extrinsics. Current implementations of Light Nodes (for e.g., Smoldot) use the wasmtime as its runtime environment to
drastically simplify the code. The performance of wasmtime is satisfying enough not to require a native runtime. The details of the runtime API that the
environment needs to support can be found in (Appendix C).

7.4. Light Client Messages

Light clients are applications that fetch the required data that they need from a Polkadot node with an associated proof to validate the data. This makes
it possible to interact with the Polkadot network without requiring to run a full node or having to trust the remote peers. The light client messages make
this functionality possible.

All light client messages are protobuf encoded and are sent over the /dot/light/2 substream.

7.4.1. Request

A message with all possible request messages. All messages are sent as part of this message.

Type Id Description

oneof (request) The request type

Where the request can be one of the following fields:

Type Id Description

RemoteCallRequest 1 A remote call request (Definition 106)

RemoteReadRequest 2 A remote read request (Definition 108)

RemoteReadChildRequest 4 A remote read child request (Definition 110)

7.4.2. Response

A message with all possible response messages. All messages are sent as part of this message.

Type Id Description

oneof (response) The response type

Where the response can be one of the following fields:

Type Id Description

RemoteCallResponse 1 A remote call response (Definition 107)

end if

Querying State Algorithm.

: Returns the response to the query requested from the Full Node for the query at block height .

: Predicate that checks the validity of response and associated merkle proof by matching it against the Commit Root

Hash obtained as a result of warp sync.

3: return SOME res

4:

5: throw ERROR

QueryFullNode q h

validityCheck root res π

root

https://spec.polkadot.network/chap-runtime-api
https://spec.polkadot.network/sect-lightclient#sect-light-remote-call-request
https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-request
https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-child-request
https://spec.polkadot.network/sect-lightclient#sect-light-remote-call-response

Type Id Description

RemoteReadResponse 2 A remote read response (Definition 109)

7.4.3. Remote Call Messages

Execute a call to a contract at the given block.

Definition 106. Remote Call Request

Definition 107. Remote Call Response

7.4.4. Remote Read Messages

Read a storage value at the given block.

Definition 108. Remote Read Request

Definition 109. Remote Read Response

Remote call request.

Type Id Description

bytes 2 Block at which to perform call

string 3 Method name

bytes 4 Call data

Remote call response.

Type Id Description

bytes 2 An Option type (Definition 200) containing the call proof or None if proof generation failed.

Remote read request.

Type Id Description

bytes 2 Block at which to perform call

repeated bytes 3 Storage keys

Remote read response.

Type Id Description

bytes 2 An Option type (Definition 200) containing the read proof or None if proof generation failed.

https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-response
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

7.4.5. Remote Read Child Messages

Read a child storage value at the given block.

Definition 110. Remote Read Child Request

7.5. Storage for Light Clients

The light client requires a persistent storage for saving the state of the blockchain. In addition, it requires efficient Serialization/De-serialization methods
to transform SCALE (Section A.2.2.) encoded network traffic for storing and reading from the persistent storage.

Remote read child request.

Type Id Description

bytes 2 Block at which to perform call

bytes 3 Child storage key, this is relative to the child type storage location

bytes 6 Storage keys

The response is the same as for the Remote Read Request message, respectively Definition 109.

https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-response

8. Availability & Validity
Polkadot serves as a replicated shared-state machine designed to resolve scalability issues and interoperability among blockchains. The validators of
Polkadot execute transactions and participate in the consensus of Polkadots primary chain, the so-called relay chain. Parachains are independent
networks that maintain their own state and are connected to the relay chain. Those parachains can take advantage of the relay chain consensus
mechanism, including sending and receiving messages to and from other parachains. Parachain nodes that send parachain blocks, known as
candidates, to the validators in order to be included in relay chain are referred to as collators.

The Polkadot relay chain validators are responsible for guaranteeing the validity of both relay chain and parachain blocks. Additionally, the validators are
required to keep enough parachain blocks that should be included in the relay chain available in their local storage in order to make those retrievable by
peers, who lack the information to reliably confirm the issued validity statements about parachain blocks. The Availability & Validity (AnV) protocol
consists of multiple steps for successfully upholding those responsibilities.

Parachain blocks themselves are produced by collators (Section 8.1.), whereas the relay chain validators only verify their validity (and later, their
availability). It is possible that the collators of a parachain produce multiple parachain block candidates for a child of a specific block. Subsequently, they
send the block candidates to the relay chain validators who are assigned to the specific parachain. The assignment is determined by the Runtime
(Section 8.2.). Those validators are then required to check the validity of submitted candidates (Section 8.3.), then issue and collect statements (Section
8.2.1.) about the validity of candidates to other validators. This process is known as candidate backing. Once a candidate meets specified criteria for
inclusion, the selected relay chain block author then chooses any of the backed candidates for each parachain and includes those into the relay chain
block (Section 8.2.2.).

Every relay chain validator must fetch the proposed candidates and issue votes on whether they have the candidate saved in their local storage, so-
called availability votes (Section 8.4.1.), then also collect the votes sent by other validators and include them in the relay chain state (Section 8.2.2.).
This process ensures that only relay chain blocks get finalized where each candidate is available on enough nodes of validators.

Parachain candidates contained in non-finalized relay chain blocks must then be retrieved by a secondary set of relay chain validators, unrelated from
the candidate backing process, who are randomly assigned to determine the validity of specific parachains based on a VRF lottery and are then
required to vote on the validity of those candidates. This process is known as approval voting (Section 8.5.). If a validator does not have the candidate
data, it must recover the candidate data (Section 8.4.2.).

8.1. Collations

Collations are proposed candidates Definition 141 to the Polkadot relay chain validators. The Polkadot network protocol is agnostic on what candidate
production mechanism each parachain uses and does not specify or mandate any of such production methods (e.g. BABE-GRANDPA, Aura, etc).
Furthermore, the relay chain validator host implementation itself does not directly interpret or process the internal transactions of the candidate but
rather rely on the parachain Runtime to validate the candidate (Section 8.3.). Collators, which are parachain nodes which produce candidate proposals
and send them to the relay chain validator, must prepare pieces of data (Definition 111) in order to correctly comply with the requirements of the
parachain protocol.

Definition 111. Collation

A collation is a data structure that contains the proposed parachain candidate, including an optional validation parachain Runtime update and
upward messages. The collation data structure, C, is a data structure of the following format:

where

 is an array of upward messages (Definition 147), , interpreted by the relay chain itself.

 is an array of outbound horizontal messages (Definition 149), , interpreted by other parachains.

 is an Option type (Definition 200) which can contain a parachain Runtime update. The new Runtime code is an array of bytes.

 is the head data (Definition 143) produced as a result of execution of the parachain specific logic.

 is the PoV block (Definition 142).

C = M ,H,R,h,P , p,w()

M = u , …u (n m)

H = z , … z (n m)

M u

H z

R

h

P

https://spec.polkadot.network/chapter-anv#sect-collations
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chapter-anv#sect-availability-votes
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#sect-candidate-recovery
https://spec.polkadot.network/chapter-anv#defn-candidate
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#defn-collation
https://spec.polkadot.network/chapter-anv#defn-upward-message
https://spec.polkadot.network/chapter-anv#defn-outbound-hrmp-message
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#defn-para-block

8.2. Candidate Backing

The Polkadot validator receives an arbitrary number of parachain candidates with associated proofs from untrusted collators. The assigned validators of
each parachain (Definition 146) must verify and select a specific quantity of the proposed candidates and issue those as backable candidates to their
peers. A candidate is considered backable when at least 2/3 of all assigned validators have issued a Valid statement about that candidate, as described
in Section 8.2.1.. Validators can retrieve information about assignments via the Runtime APIs Section C.9.2. respectively Section C.9.3..

8.2.1. Statements

The assigned validator checks the validity of the proposed parachains blocks (Section 8.3.) and issues Valid statements (Definition 112) to its peers if
the verification succeeded. Broadcasting failed verification as Valid statements is a slashable offense. The validator must only issue one Seconded
statement based on an arbitrary metric, which implies an explicit vote for a candidate to be included in the relay chain.

This protocol attempts to produce as many backable candidates as possible but does not attempt to determine a final candidate for inclusion. Once a
parachain candidate has been seconded by at least one other validator, and enough Valid statements have been issued about that candidate to meet
the 2/3 quorum, the candidate is ready to be included in the relay chain (Section 8.2.2.).

The validator issues validity statements votes in form of a validator protocol message (Definition 124).

Definition 112. Statement

8.2.2. Inclusion

The Polkadot validator includes the backed candidates as parachain inherent data (Definition 113) into a block as described Section 2.3.3.. The relay
chain block author decides on whatever metric which candidate should be selected for inclusion, as long as that candidate is valid and meets the
validity quorum of 2/3+ as described in Section 8.2.1.. The candidate approval process (Section 8.5.) ensures that only relay chain blocks are finalized
where each candidate for each availability core meets the requirement of 2/3+ availability votes.

Definition 113. Parachain Inherent Data

 is an unsigned 32-bit integer indicating the number of processed downward messages (Definition 148).

 is an unsigned 32-bit integer indicating the mark up to which all inbound HRMP messages have been processed by the parachain.

p

w

A statement, , is a data structure of the following format:

where

 is a varying datatype where 1 indicates that the validator “seconds” a candidate, meaning that the candidate should be included in the relay

chain, followed by the committed candidate receipt (Definition 115), . 2 indicates that the validator has deemed the candidate valid,
followed by the candidate hash.

 is the candidate hash.

 is the validator index in the authority set that signed this statement.

 is the signature of the validator.

S

S = d,A ,A (i s)

d = {
1
2

→
→

C r

C h

d

C r

C h

A i

A s

The parachain inherent data contains backed candidates and is included when authoring a relay chain block. The data structure, , is of the

following format:

I

I = A,T ,D,P (h)

T = C , …C (0 n)

D = d , … d (n m)

https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validator-groups
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#defn-statement
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chap-state#sect-inherents
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#defn-downward-message
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt

Definition 114. Candidate Receipt

Definition 115. Committed Candidate Receipt

Definition 116. Candidate Descriptor

where

 is an array of signed bitfields by validators claiming the candidate is available (or not). The array must be sorted by validator index

corresponding to the authority set (Definition 33).

 is an array of backed candidates for including in the current block.

 is an array of disputes.

 is the parachain parent head data (Definition 143).

 is a dispute statement (Section 8.7.2.1.).

 is a committed candidate receipt (Definition 115).

 is an array of validity votes themselves, expressed as signatures.

 is a bitfield of indices of the validators within the validator group (Definition 146).

 is either an implicit or explicit attestation of the validity of a parachain candidate, where 1 implies an implicit vote (in correspondence of a
Seconded statement) and 2 implies an explicit attestation (in correspondence of a Valid statement). Both variants are followed by the
signature of the validator.

 is the signature of the validator.

 the availability bitfield (Section 8.4.1.).

 is the validator index of the authority set (Definition 33).

C = R,V , i()

V = a , … a (n m)

a = {
1
2

→
→

s

s

A = L , …L (n m)

L = b, v , s(i)

A

T

D

P h

d

R

V

i

a

s

b

v i

A candidate receipt, , contains information about the candidate and a proof of the results of its execution. It’s a data structure of the following
format:

where is the candidate descriptor (Definition 116) and is the hash of candidate commitments (Definition 117).

R

R = D,C (h)

D C h

The committed candidate receipt, , contains information about the candidate and the result of its execution that is included in the relay chain.
This type is similar to the candidate receipt (Definition 114), but actually contains the execution results rather than just a hash of it. It’s a data
structure of the following format:

where is the candidate descriptor (Definition 116) and is the candidate commitments (Definition 117).

R

R = D,C()

D C

The candidate descriptor, , is a unique descriptor of a candidate receipt. It’s a data structure of the following format:D

https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#net-msg-dispute-request
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/chapter-anv#sect-availability-votes
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#defn-candidate-descriptor
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-candidate-descriptor
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments

Definition 117. Candidate Commitments

8.3. Candidate Validation

Received candidates submitted by collators and must have their validity verified by the assigned Polkadot validators. For each candidate to be valid, the
validator must successfully verify the following conditions in the following order:

1. The candidate does not exceed any parameters in the persisted validation data (Definition 240).

2. The signature of the collator is valid.

3. Validate the candidate by executing the parachain Runtime (Section 8.3.1.).

If all steps are valid, the Polkadot validator must create the necessary candidate commitments (Definition 117) and submit the appropriate statement for
each candidate (Section 8.2.1.).

where

 is the parachain Id (Definition 144).

 is the hash of the relay chain block the candidate is executed in the context of.

 is the collators public key.

 is the hash of the persisted validation data (Definition 240).

 is the hash of the PoV block.

 is the root of the block’s erasure encoding Merkle tree.

 the collator signature of the concatenated components , , and .

 is the hash of the parachain head data (Definition 143) of this candidate.

 is the hash of the parachain Runtime.

D = p,H,C ,V ,B, r, s, p ,R (i h h)

p

H

C i

V

B

r

s p H R h B

p h

R h

The candidate commitments, , is the result of the execution and validation of a parachain (or parathread) candidate whose produced values
must be committed to the relay chain. Those values are retrieved from the validation result (Definition 119). A candidate commitment is a
datastructure of the following format:

where

 is an array of upward messages sent by the parachain. Each individual message, m, is an array of bytes.

 is an array of individual outbound horizontal messages (Definition 149) sent by the parachain.

 is an Option value (Definition 200) that can contain a new parachain Runtime in case of an update.

 is the parachain head data (Definition 143).

 is an unsigned 32-bit integer indicating the number of downward messages that were processed by the parachain. It is expected that the

parachain processes the messages from first to last.

 is an unsigned 32-bit integer indicating the watermark, which specifies the relay chain block number up to which all inbound horizontal
messages have been processed.

C

C = M ,M ,R,h, p,w(u h)

M u

M h

R

h

p

w

https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#sect-parachain-runtime
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#defn-validation-result
https://spec.polkadot.network/chapter-anv#defn-outbound-hrmp-message
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-head-data

8.3.1. Parachain Runtime

Parachain Runtimes are stored in the relay chain state, and can either be fetched by the parachain Id or the Runtime hash via the relay chain Runtime
API as described in Section C.9.8. and Section C.9.9. respectively. The retrieved parachain Runtime might need to be decompressed based on the
magic identifier as described in Section 8.3.2..

In order to validate a parachain block, the Polkadot validator must prepare the validation parameters (Definition 118), then use its local Wasm execution
environment (Section 2.6.3.) to execute the validate_block parachain Runtime API by passing on the validation parameters as an argument. The
parachain Runtime function returns the validation result (Definition 119).

Definition 118. Validation Parameters

Definition 119. Validation Result

8.3.2. Runtime Compression

Runtime compression is not documented yet.

The validation parameters structure, , is required to validate a candidate against a parachain Runtime. It’s a data structure of the following
format:

where

 is the parachain head data (Definition 143).

 is the block body (Definition 142).

 is the latest relay chain block number.

 is the relay chain block storage root (Section 2.4.4.).

P

P = h, b,B ,S (i r)

h

b

B i

S r

The validation result is returned by the validate_block parachain Runtime API after attempting to validate a parachain block. Those results are
then used in candidate commitments (Definition 117), which then will be inserted into the relay chain via the parachain inherent data (Definition
113). The validation result, , is a data structure of the following format:

where

 is the parachain head data (Definition 143).

 is an Option value (Definition 200) that can contain a new parachain Runtime in case of an update.

 is an array of upward messages sent by the parachain. Each individual message, m, is an array of bytes.

 is an array of individual outbound horizontal messages (Definition 149) sent by the parachain.

 is an unsigned 32-bit integer indicating the number of downward messages that were processed by the parachain. It is expected that the
parachain processes the messages from first to last.

 is an unsigned 32-bit integer indicating the watermark, which specifies the relay chain block number up to which all inbound horizontal

messages have been processed.

V

V = h,R,M ,M , p w(u h ,)

M =u m , …m (0 n)

M =h t , … t (0 n)

h

R

M u

M h

p

w

https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validation-code
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validation-code-by-hash
https://spec.polkadot.network/chapter-anv#sect-runtime-compression
https://spec.polkadot.network/chapter-anv#defn-validation-parameters
https://spec.polkadot.network/chap-state#sect-code-executor
https://spec.polkadot.network/chapter-anv#defn-validation-result
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chap-state#sect-merkl-proof
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-outbound-hrmp-message

8.4. Availability

8.4.1. Availability Votes

The Polkadot validator must issue a bitfield (Definition 151) which indicates votes for the availability of candidates. Issued bitfields can be used by the
validator and other peers to determine which backed candidates meet the 2/3+ availability quorum.

Candidates are inserted into the relay chain in the form of parachain inherent data (Section 8.2.2.) by a block author. A validator can retrieve that data
by calling the appropriate Runtime API entry (Section C.9.3.), then create a bitfield indicating for which candidate the validator has availability data
stored and broadcast it to the network (Definition 128). When sending the bitfield distribution message, the validator must ensure is set
appropriately, therefore clarifying to which state the bitfield is referring to, given that candidates can vary based on the chain fork.

Missing availability data of candidates must be recovered by the validator as described in Section 8.4.2.. If previously issued bitfields are no longer
accurate, i.e., the availability data has been recovered or the candidate of an availability core has changed, the validator must create a new bitfield and
broadcast it to the network. Candidates must be kept available by validators for a specific amount of time. If a candidate does not receive any backing,
validators should keep it available for about one hour, in case the state of backing does change. Backed and even approved candidates (Section 8.5.)
must be kept by validators for about 25 hours since disputes (Section 8.6.) can occur and the candidate needs to be checked again.

The validator issues availability votes in form of a validator protocol message (Definition 125).

8.4.2. Candidate Recovery

The availability distribution of the Polkadot validator must be able to recover parachain candidates that the validator is assigned to, in order to determine
whether the candidate should be backed (Section 8.2.) respectively whether the candidate should be approved (Section 8.5.). Additionally, peers can
send availability requests as defined in Definition 132 and Definition 134 to the validator, which the validator should be able to respond to.

Candidates are recovered by sending requests for specific indices of erasure encoded chunks (Section A.4.1.). A validator should request chunks by
picking peers randomly and must recover at least chunks, where and . is the number of validators as specified in
the session info, which can be fetched by the Runtime API as described in Section C.9.13..

8.5. Approval Voting

The approval voting process ensures that only valid parachain blocks are finalized on the relay chain. After backable parachain candidates were
submitted to the relay chain (Section 8.2.2.), which can be retrieved via the Runtime API (Section C.9.3.), validators need to determine their
assignments for each parachain and issue approvals for valid candidates, respectively disputes for invalid candidates. Since it cannot be expected that
each validator verifies every single parachain candidate, this mechanism ensures that enough honest validators are selected to verify parachain
candidates in order to prevent the finalization of invalid blocks. If an honest validator detects an invalid block that was approved by one or more
validators, the honest validator must issue a dispute which will cause escalations, resulting in consequences for all malicious parties, i.e., slashing. This
mechanism is described more in Section 8.5.1..

8.5.1. Assignment Criteria

Validators determine their assignment based on a VRF mechanism, similar to the BABE consensus mechanism. First, validators generate an availability
core VRF assignment (Definition 121), which indicates which availability core a validator is assigned to. Then a delayed availability core VRF
assignment is generated, which indicates at what point a validator should start the approval process. The delays are based on “tranches” (Section
8.5.2.).

An assigned validator never broadcasts their assignment until relevant. Once the assigned validator is ready to check a candidate, the validator
broadcasts their assignment by issuing an approval distribution message (Definition 129), where is of variant 0. Other assigned validators that

receive that network message must keep track of if, expecting an approval vote following shortly after. Assigned validators can retrieve the candidate by
using the availability recovery (Section 8.4.2.) and then validate the candidate (Section 8.3.).

The validator issues approval votes in form of a validator protocol message (Definition 124) respectively disputes (Section 8.6.).

8.5.2. Tranches

Validators use a subjective, tick-based system to determine when the approval process should start. A validator starts the tick-based system when a
new availability core candidate have been proposed, which can be retrieved via the Runtime API (Section C.9.3.), and increments the tick every 500
milliseconds. Each tick/increment is referred to as a “tranche”, represented as an integer, starting at 0.

B h

f + 1 n = 3f + k k ∈ 1, 2, 3{ } n

M

https://spec.polkadot.network/chapter-anv#defn-bitfield-array
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#net-msg-bitfield-dist-msg
https://spec.polkadot.network/chapter-anv#sect-candidate-recovery
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#sect-disputes
https://spec.polkadot.network/chapter-anv#net-msg-collator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#net-msg-chunk-fetching-request
https://spec.polkadot.network/chapter-anv#net-msg-available-data-request
https://spec.polkadot.network/id-cryptography-encoding#sect-erasure-encoding
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-availability-assignment-criteria
https://spec.polkadot.network/chapter-anv#defn-availability-core-vrf-assignment
https://spec.polkadot.network/chapter-anv#sect-tranches
https://spec.polkadot.network/chapter-anv#sect-tranches
https://spec.polkadot.network/chapter-anv#net-msg-approval-distribution
https://spec.polkadot.network/chapter-anv#sect-candidate-recovery
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-disputes
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores

As described in Section 8.5.1., the validator first executes the VRF mechanism to determine which parachains (availability cores) the validator is
assigned to, then an additional VRF mechanism for each assigned parachain to determine the delayed assignment. The delayed assignment indicates
the tranche at which the validator should start the approval process. A tranche of value 0 implies that the assignment should be started immediately,
while later assignees of later tranches wait until it’s their term to issue assignments, determined by their subjective, tick-based system.

Validators are required to track broadcasted assignments by other validators assigned to the same parachain, including verifying the VRF output. Once
a valid assignment from a peer was received, the validator must wait for the following approval vote within a certain period as described in Section
C.9.13. by orienting itself on its local, tick-based system. If the waiting time after a broadcasted assignment exceeds the specified period, the validator
interprets this behavior as a “no-show”, indicating that more validators should commit on their tranche until enough approval votes have been collected.

If enough approval votes have been collected as described in Section C.9.13., then assignees of later tranches do not have to start the approval
process. Therefore, this tranche system serves as a mechanism to ensure that enough candidate approvals from a random set of validators are created
without requiring all assigned validators to check the candidate.

Definition 120. Relay VRF Story

Definition 121. Availability Core VRF Assignment

The relay VRF story is an array of random bytes derived from the VRF submitted within the block by the block author. The relay VRF story, T, is
used as input to determine approval voting criteria and generated in the following way:

where

 constructs a VRF transcript (Definition 185).

 is the BABE randomness of the current epoch (Definition 76).

 is the current BABE slot (Definition 59).

 is the current BABE epoch index (Definition 59).

 is the public key of the authority.

T = Transcript b , b , e ,A(r s i)

Transcript

b r

b s

e i

A

An availability core VRF assignment is computed by a relay chain validator to determine which availability core (Definition 145) a validator is
assigned to and should vote for approvals. Computing this assignment relies on the VRF mechanism, transcripts, and STROBE operations
described further in Section A.1.3..

The Runtime dictates how many assignments should be conducted by a validator, as specified in the session index, which can be retrieved via the
Runtime API (Section C.9.13.). The amount of assignments is referred to as “samples.” For each iteration of the number of samples, the validator
calculates an individual assignment, , where the little-endian encoded sample number, , is incremented by one. At the beginning of the iteration,

 starts at value 0.

The validator executes the following steps to retrieve a (possibly valid) core index:

where is the secret key, is the public key and is the integer 64 encoded as little endian. is the relay VRF story as defined in
Definition 120. Following:

T s

S

t ←1 Transcript ’A&V MOD’()

t ←2 append t , ’RC-VRF’,R (1 s)

t ←3 append t , ’sample’, s(2)

t ←4 append t , ’vrf-nm-pk’, p (3 k)

t ←5 meta-ad t , ’VRFHash’, False(4)

t ←6 meta-ad t , 64 , True(5 le)

i ← prf t , False(6)

o = s ⋅k i

s k p k 64 le R s

https://spec.polkadot.network/chapter-anv#sect-availability-assignment-criteria
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chapter-anv#defn-availability-core
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#defn-relay-vrf-story

Definition 122. Delayed Availability Core VRF Assignment

where is the integer 4 encoded as little endian, is the 4-byte challenge interpreted as a little endian encoded interger and is the number of
availability cores used during the active session, as defined in the session info retrieved by the Runtime API (Section C.9.13.). The resulting
integer, , indicates the parachain Id (Definition 144). If the parachain Id doesn’t exist, as can be retrieved by the Runtime API (Section C.9.3.),
the validator discards that value and continues with the next iteration. If the Id does exist, the validator continues with the following steps:

where is described in Definition 182. The resulting values of , and are used to construct an assignment certificate (Definition
123) of kind 0.

t ←1 Transcript ’VRFResult’()

t ←2 append t , ”, ’A&V CORE’(1)

t ←3 append t , ’vrf-in’, i(2)

t ←4 append t , ’vrf-out’, o(3)

t ←5 meta-ad t , ”, False(4)

t ←6 meta-ad t , 4 , True(5 le)

r ← prf t , False(6)

c =i rmoda c

4 le r a c

c i

t ←1 Transcript ’A&V ASSIGNED’()

t ←2 append t , ’core’, c (1 i)

p ← dleq_prove t , i(2)

dleq_prove o p s

The delayed availability core VRF assignments determined at what point a validator should start the approval process as described in Section
8.5.2.. Computing this assignment relies on the VRF mechanism, transcripts, and STROBE operations described further in Section A.1.3..

The validator executes the following steps:

The resulting value is the VRF proof (Definition 181). is described in Definition 182.

The tranche, , is determined as:

t ←1 Transcript ’A&V DELAY’()

t ←2 append t , ’RC-VRF’,R (1 s)

t ←3 append t , ’core’, c (2 i)

t ←4 append t , ’vrf-nm-pk’, p (3 k)

t ←5 meta-ad t , ’VRFHash’, False(4)

t ←6 meta-ad t , 64 , True(5 le)

i ← prf t , False(6)

o = s ⋅k i

p ← dleq_prove t , i(6)

p dleq_prove

d

t ←1 Transcript ’VRFResult’()

t ←2 append t , ”, ’A&V TRANCHE’(1)

t ←3 append t , ’vrf-in’, i(2)

t ←4 append t , ’vrf-out’, o(3)

t ←5 meta-ad t , ”, False(4)

t ←6 meta-ad t , 4 , True(5 le)

c ← prf t , False(6)

https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove
https://spec.polkadot.network/chapter-anv#defn-assignment-cert
https://spec.polkadot.network/chapter-anv#defn-assignment-cert
https://spec.polkadot.network/chapter-anv#sect-tranches
https://spec.polkadot.network/chapter-anv#sect-tranches
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-proof
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove

Definition 123. Assignment Certificate

8.6. Disputes

8.7. Network Messages

The availability and validity process requires certain network messages to be exchanged between validators and collators.

8.7.1. Notification Messges

The notification messages are exchanged between validators, including messages sent by collators to validators. The protocol messages are
exchanged based on a streaming notification substream (Section 4.5.). The messages are SCALE encoded (Section A.2.2.).

Definition 124. Validator Protocol Message

where

 is the number of delayed tranches by total as specified by the session info, retrieved via the Runtime API (Section C.9.13.).

 is the zeroth delay tranche width as specified by the session info, retrieved via the Runtime API (Section C.9.13.).

The resulting tranche, , cannot be less than . If the tranche is less than , then . The resulting values , and are used to construct an
assignment certificate (\<Definition 123) of kind 1.

d = dmod d + d −(c z) d z

d c

d z

n 0 0 d = 0 o p c i

The Assignment Certificate proves to the network that a Polkadot validator is assigned to an availability core and is, therefore, qualified for the
approval of candidates, as clarified in Definition 121. This certificate contains the computed VRF output and is a data structure of the following
format:

where indicates the kind of the certificate, respectively the value 0 proves the availability core assignment (Definition 121), followed by the
sample number , and the value 1 proves the delayed availability core assignment (Definition 122), followed by the core index (Section C.9.3.).

 is the VRF output and is the VRF proof.

k, o, p()

k = {
0
1

→
→

s

c i

k

s c i

o p

INFO

Disputes are not documented yet.

The validator protocol message is a varying datatype used by validators to broadcast relevant information about certain steps in the A&V process.
Specifically, this includes the backing process (Section 8.2.) and the approval process (Section 8.5.). The validator protocol message, , is a

varying datatype of the following format:

where

 is a bitfield distribution message (Definition 128).

 is a statement distribution message (Definition 127).

 is a approval distribution message (Definition 129).

M

M =

⎩
⎨
⎧1

3
4

→
→
→

M f

M s

M a

M f

M s

M a

https://spec.polkadot.network/chap-networking#sect-connection-establishment
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#defn-assignment-cert
https://spec.polkadot.network/chapter-anv#defn-availability-core-vrf-assignment
https://spec.polkadot.network/chapter-anv#defn-availability-core-vrf-assignment
https://spec.polkadot.network/chapter-anv#delayed-availability-core-vrf-assignment
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#net-msg-bitfield-dist-msg
https://spec.polkadot.network/chapter-anv#net-msg-statement-distribution
https://spec.polkadot.network/chapter-anv#net-msg-approval-distribution

Definition 125. Collation Protocol Message

Definition 126. Collator Message

Definition 127. Statement Distribution Message

Definition 128. Bitfield Distribution Message

The collation protocol message, M, is a varying datatype of the following format:

where is the collator message (Definition 126).

M = {0 → M c

M c

The collator message is sent as part of the collator protocol message (Definition 125). The collator message, , is a varying datatype of the

following format:

where

 is a varying datatype where 0 indicates the intent to advertise a collation and 1 indicates the advertisement of a collation to a validator. 4
indicates that a collation sent to a validator was seconded.

 is the public key of the collator.

 is the parachain Id (Definition 144).

 is the signature of the collator using the PeerId of the collators node.

 is the hash of the parachain block (Definition 142).

 is a full statement (Definition 112).

M

M =

⎩
⎨
⎧0

1
4

→
→
→

C ,P ,C (i i s)
H

B ,S(h)

M

C i

P i

C s

H

S

The statement distribution message is sent as part of the validator protocol message (Definition 125) indicates the validity vote of a validator for a
given candidate, described further in Section 8.2.1.. The statement distribution message, , is of varying type of the following format:

where

 is a varying datatype where 0 indicates a signed statement and 1 contains metadata about a seconded statement with a larger payload,
such as a runtime upgrade. The candidate itself can be fetched via the request/response message (Definition 138).

 is the hash of the relay chain parent, indicating the state this message is for.

 is a full statement (Definition 112).

 is the validator index in the authority set (Definition 33) that signed this message.

 is the signature of the validator.

M

M = {
0
1

→
→

B ,S(h)
S m

S =m B ,C ,A ,A (h h i s)

M

B h

S

A i

A s

The bitfield distribution message is sent as part of the validator protocol message (Definition 124) and indicates the availability vote of a validator
for a given candidate, described further in Section 8.4.1.. This message is sent in the form of a validator protocol message (Definition 124). The
bitfield distribution message, , is a datastructure of the following format:M

https://spec.polkadot.network/chapter-anv#net-msg-collator-message
https://spec.polkadot.network/chapter-anv#net-msg-collator-protocol-message
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chapter-anv#defn-statement
https://spec.polkadot.network/chapter-anv#net-msg-collator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#net-msg-statement-fetching-request
https://spec.polkadot.network/chapter-anv#defn-statement
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-availability-votes
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message

Definition 129. Approval Distribution Message

8.7.2. Request & Response

The request & response network messages are sent and received between peers in the Polkadot network, including collators and non-validator nodes.
Those messages are conducted on the request-response substreams (Section 4.5.). The network messages are SCALE encoded as described in
Section ?.

Definition 130. PoV Fetching Request

where

 is the hash of the relay chain parent, indicating the state this message is for.

 is the bitfield array (Definition 151).

 is the validator index in the authority set (Definition 33) that signed this message.

 is the signature of the validator.

M = {0 → B ,P(h)

P = d,A ,A (i s)

B h

d

A i

A s

The approval distribution message is sent as part of the validator protocol message (Definition 124) and indicates the approval vote of a validator
for a given candidate, described further in Section 8.5.1.. The approval distribution message, , is a varying datatype of the following format:

where

 is a varying datatype where 0 indicates assignments for candidates in recent, unfinalized blocks and 1 indicates approvals for candidates

in some recent, unfinalized block.

 is an assignment criterion that refers to the candidate under which the assignment is relevant by the block hash.

 is an unsigned 32-bit integer indicating the index of the candidate, corresponding to the order of the availability cores (Section C.9.3.).

 is the relay chain block hash where the candidate appears.

 is the authority set Id (Definition 78) of the validator that created this message.

 is the signature of the validator issuing this message.

 is the certification of the assignment.

 is a varying datatype where 0 indicates an assignment based on the VRF that authorized the relay chain block where the candidate was
included, followed by a sample number, . 1 indicates an assignment story based on the VRF that authorized the relay chain block where the
candidate was included combined with the index of a particular core. This is described further in Section 8.5..

 is a VRF output and its corresponding proof.

M

M = {
0
1

→
→

C I … C, I ((,)0 ()n)
V , …V (0 n)

C = B ,A , c (h i a)

c =a c ,P ,P (k o p)

c =k {
0 → s

1 → i

V = B , I,A ,A (h i s)

M

C

I

B h

A i

A s

c a

c k

s

P o P p

The PoV fetching request is sent by clients who want to retrieve a PoV block from a node. The request is a data structure of the following format:

https://spec.polkadot.network/chap-networking#sect-connection-establishment
https://spec.polkadot.network/chapter-anv#defn-bitfield-array
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-availability-assignment-criteria
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chapter-anv#sect-approval-voting

Definition 131. PoV Fetching Response

Definition 132. Chunk Fetching Request

Definition 133. Chunk Fetching Response

Definition 134. Available Data Request

Definition 135. Available Data Response

where is the 256-bit hash of the PoV block. The response message is defined in Definition 131.

C h

C h

The PoV fetching response is sent by nodes to the clients who issued a PoV fetching request (Definition 130). The response, , is a varying

datatype of the following format:

where 0 is followed by the PoV block and 1 indicates that the PoV block was not found.

R

R = {
0
1

→
→

B

ϕ

The chunk fetching request is sent by clients who want to retrieve chunks of a parachain candidate. The request is a data structure of the following
format:

where is the 256-bit hash of the parachain candidate and is a 32-bit unsigned integer indicating the index of the chunk to fetch. The response

message is defined in Definition 133.

C , i(h)

C h i

The chunk fetching response is sent by nodes to the clients who issued a chunk fetching request (Definition 132). The response, , is a varying
datatype of the following format:

where 0 is followed by the chunk response, and 1 indicates that the requested chunk was not found. contains the erasure-encoded chunk

of data belonging to the candidate block, , and is that chunks proof in the Merkle tree. Both and are byte arrays of type .

R

R = {
0
1

→
→

C r

ϕ

C =r c, c (p)

C r C r

c c p c c p b … b (n m)

The available data request is sent by clients who want to retrieve the PoV block of a parachain candidate. The request is a data structure of the
following format:

where is the 256-bit candidate hash to get the available data for. The response message is defined in Definition 135.

C h

C h

The available data response is sent by nodes to the clients who issued an available data request (Definition 134). The response, , is a varying
datatype of the following format:

R

R = {
0
1

→
→

A

ϕ

A = P ,D (ov pv)

https://spec.polkadot.network/chapter-anv#net-msg-pov-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-pov-fetching-request
https://spec.polkadot.network/chapter-anv#net-msg-chunk-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-chunk-fetching-request
https://spec.polkadot.network/chapter-anv#net-msg-available-data-response
https://spec.polkadot.network/chapter-anv#net-msg-available-data-request

Definition 136. Collation Fetching Request

Definition 137. Collation Fetching Response

Definition 138. Statement Fetching Request

Definition 139. Statement Fetching Response

8.7.2.1. Dispute Request

The dispute request is sent by clients who want to issue a dispute about a candidate. The request, , is a data structure of the following format:

where 0 is followed by the available data, , and 1 indicates the the requested candidate hash was not found. is the PoV block (Definition
142) and is the persisted validation data (Definition 240).

A P ov

D pv

The collation fetching request is sent by clients who want to retrieve the advertised collation at the specified relay chain block. The request is a
data structure of the following format:

where is the hash of the relay chain block and is the parachain Id (Definition 144). The response message is defined in Definition 137.

B ,P (h id)

B h P id

The collation fetching response is sent by nodes to the clients who issued a collation fetching request (Definition 136). The response, , is a
varying datatype of the following format:

where is followed by the candidate receipt (Definition 114), , as and the PoV block (Definition 142), . This type does not notify the client

about a statement that was not found.

R

R = {0 → C ,B(r)

0 C r B

The statement fetching request is sent by clients who want to retrieve statements about a given candidate. The request is a data structure of the
following format:

where is the hash of the relay chain parent and is the candidate hash that was used to create a committed candidate receipt (Definition
115). The response message is defined in Definition 139.

B ,C (h h)

B h C h

The statement fetching response is sent by nodes to the clients who issued a collation fetching request (Definition 138). The response, , is a
varying datatype of the following format:

where is the committed candidate receipt (Definition 115). No response is returned if no statement is found.

R

R = {0 → C r

C r

D r

D =r C ,S , I ,V (r i v v)

I =v A ,A , k (i s i)

V =v A ,A , k (i s v)

k =i {0 → ϕ

k =v

⎩
⎨

⎧0
1
2
3

→
→
→
→

ϕ

C h

C h

ϕ

https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#net-msg-collation-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-collation-fetching-request
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#net-msg-statement-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-statement-fetching-request
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt

where

 is the candidate that is being disputed. The structure is a candidate receipt (Definition 114).

 is an unsigned 32-bit integer indicating the session index the candidate appears in.

 is the invalid vote that makes up the request.

 is the valid vote that makes this dispute request valid.

 is an unsigned 32-bit integer indicating the validator index in the authority set (Definition 33).

 is the signature of the validator.

 is a varying datatype and implies the dispute statement. 0 indicates an explicit statement.

 is a varying datatype and implies the dispute statement.

 indicates an explicit statement.

 indicates a seconded statement on a candidate, , from the backing phase. is the hash of the candidate.

 indicates a valid statement on a candidate, , from the backing phase. is the hash of the candidate.

 indicates an approval vote from the approval checking phase.

The response message is defined in Section 8.7.2.2..

8.7.2.2. Dispute Response

The dispute response is sent by nodes to the clients who issued a dispute request (Section 8.7.2.1.). The response, , is a varying type of the following
format:

where indicates that the dispute was successfully processed.

8.8. Definitions

Definition 140. Collator

Definition 141. Candidate

Definition 142. Parachain Block

Definition 143. Head Data

C r

S i

I v

V v

A i

A s

k i

k v

0

1 C h C h

2 C h C h

3

R

R = {0 → ϕ

0

A collator is a parachain node that sends parachain blocks, known as candidates (Definition 141), to the relay chain validators. The relay chain
validators are not concerned with how the collator works or how it creates candidates.

A candidate is a submitted parachain block (Definition 142) to the relay chain validators. A parachain block stops being referred to as a candidate
as soon it has been finalized.

A parachain block or a Proof-of-Validity block (PoV block) contains the necessary data for the parachain-specific state transition logic. Relay chain
validators are not concerned with the inner structure of the block and treat it as a byte array.

https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#net-msg-dispute-response
https://spec.polkadot.network/chapter-anv#net-msg-dispute-request
https://spec.polkadot.network/chapter-anv#defn-candidate
https://spec.polkadot.network/chapter-anv#defn-para-block

Definition 144. Parachain Id

Definition 145. Availability Core

Definition 146. Validator Groups

Definition 147. Upward Message

Definition 148. Downward Message

Definition 149. Outbound HRMP Message

Definition 150. Inbound HRMP Message

Definition 151. Bitfield Array

The head data contains information about a parachain block (Definition 142). The head data is returned by executing the parachain Runtime, and
relay chain validators are not concerned with its inner structure and treat it as a byte array.

The Parachain Id is a unique, unsigned 32-bit integer which serves as an identifier of a parachain, assigned by the Runtime.

Availability cores are slots used to process parachains. The Runtime assigns each parachain to an availability core, and validators can fetch
information about the cores, such as parachain block candidates, by calling the appropriate Runtime API (Section C.9.3.). Validators are not
concerned with the internal workings from the Runtimes perspective.

Validator groups indicate which validators are responsible for creating backable candidates for parachains (Section 8.2.), and are assigned by the
Runtime (Section C.9.2.). Validators are not concerned with the internal workings from the Runtimes perspective. Collators can use this
information for submitting blocks.

An upward message is an opaque byte array sent from a parachain to a relay chain.

A downward message is an opaque byte array received by the parachain from the relay chain.

An outbound HRMP message (Horizontal Relay-routed Message Passing) is sent from the perspective of a sender of a parachain to another
parachain by passing it through the relay chain. It’s a data structure of the following format:

where is the recipient Id (Definition 144) and is an upward message (Definition 147).

I,M()

I M

An inbound HRMP message (Horizontal Relay-routed Message Passing) is seen from the perspective of a recipient parachain sent from another
parachain by passing it through the relay chain. It’s a data structure of the following format:

where is the unsigned 32-bit integer indicating the relay chain block number at which the message was passed down to the recipient parachain
and is a downward message (Definition 148).

N ,M()

N

M

https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validator-groups
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-upward-message
https://spec.polkadot.network/chapter-anv#defn-downward-message

A bitfield array contains single-bit values, which indicates whether a candidate is available. The number of items is equal to the number of
availability cores (Definition 145), and each bit represents a vote on the corresponding core in the given order. Respectively, if the single bit equals
1, then the Polkadot validator claims that the availability core is occupied, there exists a committed candidate receipt (Definition 115) and that the
validator has a stored chunk of the parachain block (Definition 142).

https://spec.polkadot.network/chapter-anv#defn-availability-core
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-para-block

Polkadot Runtime
Description of various useful Runtime internals

📄 9. Extrinsics

9.1. Introduction

📄 10. Weights

10.1. Motivation

📄 11. Consensus

11.1. BABE digest messages

📄 12. Metadata

The runtime metadata structure contains all the information necessary on how to interact with the Polkadot runtime. Considering that Polkadot runtimes are upgradable and, the…

https://spec.polkadot.network/id-extrinsics
https://spec.polkadot.network/id-weights
https://spec.polkadot.network/id-consensus
https://spec.polkadot.network/sect-metadata

9. Extrinsics

9.1. Introduction

An extrinsic is a SCALE encoded array consisting of a version number, signature, and varying data types indicating the resulting Runtime function to be
called, including the parameters required for that function to be executed.

9.2. Preliminaries

Definition 152. Extrinsic

Definition 153. Extrinsic Version

9.3. Extrinsics Body

9.3.1. Version 4

Version 4 of the Polkadot extrinsic format is defined as follows:

where

 is the multi-address of the sender defined in Definition 154.

: the signature of the sender (Definition 155).

: the extra data for the extrinsic (Definition 156).

: the indicator of the Polkadot module (Definition 157).

: the indicator of the function of the Polkadot module (Definition 158).

Definition 154. Extrinsic Address

Definition 155. Extrinsic Signature

An extrinsic , , is a tuple consisting of the extrinsic version, (Definition 153), and the body of the extrinsic, .

The value of varies for each version. The current version 4 is described in Section 9.3.1..

tx T v T b

tx = T ,T (v b)

T b

 is a 8-bit bitfield and defines the extrinsic version. The required format of an extrinsic body, , is dictated by the Runtime. Older or
unsupported versions are rejected.

The most significant bit of indicates whether the transaction is signed () or unsigned (). The remaining 7-bits represent the version number.
As an example, for extrinsic format version 4, a signed extrinsic represents as 132 while an unsigned extrinsic represents it as 4 .

T v T b

T v 1 0
T v

T =b A ,Sig,E,M ,F m(i i i())

A i

Sig

E

M i

F mi()

Account Id, , is the 32-byte address of the sender of the extrinsic as described in the external SS58 address format.A i

https://spec.polkadot.network/id-extrinsics#defn-extrinsic-address
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-signature
https://spec.polkadot.network/id-extrinsics#defn-extra-data
https://spec.polkadot.network/id-extrinsics#defn-module-indicator
https://spec.polkadot.network/id-extrinsics#defn-function-indicator
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-version
https://spec.polkadot.network/id-extrinsics#sect-version-four
https://github.com/paritytech/substrate/wiki/External-Address-Format-(SS58)

Definition 156. Extra Data

Definition 157. Module Indicator

The signature, , is a varying data type indicating the used signature type, followed by the signature created by the extrinsic author. The
following types are supported:

Signature types vary in size, but each individual type is always fixed-size and therefore does not contain a length prefix. Ed25519 and Sr25519

signatures are 512-bit while Ecdsa is 520-bit, where the last 8 bits are the recovery ID.

The signature is created by signing payload .

where

: the module indicator (Definition 157).

: the function indicator of the module (Definition 158).

: the extra data (Definition 156).

: a UINT32 containing the specification version (spec_version) of the Runtime (Section C.4.1.), which can be updated and is therefore
subject to change.

: a UINT32 containing the transaction version (transaction_version) of the Runtime (Section C.4.1.), which can be updated and is
therefore subject to change.

: a 32-byte array containing the genesis hash.

: a 32-byte array containing the hash of the block which starts the mortality period, as described in Definition 159.

Sig

Sig :=

⎩
⎨

⎧0,
1,
2,

Ed25519, followed by: (b , … , b)0 63

Sr25519, followed by: (b , … , b)0 63

Ecdsa, followed by: (b , … , b)0 64

P

P

Raw

:= {
Raw,
Blake2(Raw),

if ∥Raw∥ ≤ 256
if ∥Raw∥ > 256

:= (M ,F (m),E,R ,F ,H (G),H (B))i i v v h h

M i

F mi()

E

R v

F v

H Gh()

H Bh()

Extra data, , is a tuple containing additional metadata about the extrinsic and the system it is meant to be executed in.

where

: contains the SCALE encoded mortality of the extrinsic (Definition 159).

: a compact integer containing the nonce of the sender. The nonce must be incremented by one for each extrinsic created, otherwise, the

Polkadot network will reject the extrinsic.

: a compact integer containing the transactor pay including tip.

E

E = T ,N ,P (mor t)

T mor

N

P t

 is an indicator for the Runtime to which Polkadot module, , the extrinsic should be forwarded to.

 is a varying data type pointing to every module exposed to the network.

M i m

M i

https://spec.polkadot.network/id-extrinsics#defn-module-indicator
https://spec.polkadot.network/id-extrinsics#defn-function-indicator
https://spec.polkadot.network/id-extrinsics#defn-extra-data
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-mortality
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-mortality

Definition 158. Function Indicator

9.3.2. Mortality

Definition 159. Extrinsic Mortality

9.3.2.1. Example

The extrinsic author choses at block 10'000 , resulting with . The extrinsic is then valid for blocks ranging from 10'000 to
10'256 .

9.3.2.2. Encoding

 refers to the SCALE encoded form of type and . is the size of two bytes if the extrinsic is considered mortal, or simply one
bytes with a value equal to zero if the extrinsic is considered immortal.

M :=i

⎩

⎨

⎧0,
1,
…
7,
…

System
Utility

Balances

 is a tuple which contains an indicator, , for the Runtime to which function within the Polkadot module, , the extrinsic should be

forwarded to. This indicator is followed by the concatenated and SCALE encoded parameters of the corresponding function, .

The value of varies for each Polkadot module since every module offers different functions. As an example, the Balances module has the
following functions:

F mi() m i m

params

F m =i() m , params(i)

m i

Balances :=i

⎩

⎨

⎧0,
1,
2,
3,
…

transfer
set_balance
force_transfer
transfer_keep_alive

Extrinsic mortality is a mechanism which ensures that an extrinsic is only valid within a certain period of the ongoing Polkadot lifetime. Extrinsics
can also be immortal, as clarified in Section 9.3.2.2..

The mortality mechanism works with two related values:

: the period of validity in terms of block numbers from the block hash specified as in the payload (Definition 155). The
requirement is and must be the power of two, such as 32 , 64 , 128 , etc.

: the phase in the period that this extrinsic’s lifetime begins. This value is calculated with a formula, and validators can use this value in
order to determine which block hash is included in the payload. The requirement is .

In order to tie a transaction’s lifetime to a certain block () after it was issued, without wasting precious space for block hashes, block
numbers are divided into regular periods and the lifetime is instead expressed as a "phase" () from these regular boundaries:

 and are then included in the extrinsic, as clarified in Definition 156, in the SCALE encoded form of (Section 9.3.2.2.). Polkadot
validators can use to figure out the block hash included in the payload, which will therefore result in a valid signature if the extrinsic is within

the specified period or an invalid signature if the extrinsic "died".

M per H Bh()
M ≥per 4 M per

M pha

M <pha M per

H Bi()
M pha

M =pha H B mod M i() per

M per M pha T mor

M pha

M =per 256 M =pha 16

T mor M per M pha T mor

T =mor Enc M ,M SC(per pha)

https://spec.polkadot.network/id-extrinsics#sect-mortality-encoding
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-signature
https://spec.polkadot.network/id-extrinsics#defn-extra-data
https://spec.polkadot.network/id-extrinsics#sect-mortality-encoding

The SCALE encoded representation of mortality deviates from most other types, as it’s specialized to be the smallest possible value, as
described in Encode Mortality and Decode Mortality.

If the extrinsic is immortal, specify a single byte with a value equal to zero.

T mor

Algorithm 25. Encode Mortality

Algorithm Encode Mortality

Require:
return
init LIMIT()
init LIMIT(TZ())
init
return

Algorithm 26. Decode Mortality

Algorithm Decode Mortality

Require:
return
init
init
init LIMIT()
init
return

where

: the first byte of .

: the second byte of .

Limit(, ,): Ensures that is between and . If or is defined as , then there is no requirement for the
specified minimum/maximum.

TZ(): returns the number of trailing zeros in the binary representation of . For example, the binary representation of 40 is 0010
1000 , which has three trailing zeros.

: performs a binary right shift operation.

: performs a binary left shift operation.

 : performs a bitwise OR operation.

M ,M per pha

1: 0 if extrinsic is immortal
2: factor = M ≫per 12, 1,ϕ
3: left = M per −1, 1, 15
4: right = ≪

factor

M pha 4
5: left∣right

T mor

1: Immortal if T =mor
b0 0

2: enc = T +mor
b0 (T ≪mor

b1 8)
3: M =per 2 ≪ (enc mod (1 ≪ 4))
4: factor = M ≫per 12, 1,ϕ
5: M =pha (enc ≫ 4) ∗ factor
6: (M ,M)per pha

T

mor{ }
b0 T mor

T mor{ }
b1 T mor

num min max num min max min max ϕ

num num

≫

≪

∣

https://spec.polkadot.network/id-extrinsics#algo-mortality-encode
https://spec.polkadot.network/id-extrinsics#algo-mortality-decode

10. Weights

10.1. Motivation

The Polkadot network, like any other permissionless system, needs to implement a mechanism to measure and limit the usage in order to establish an
economic incentive structure, prevent network overload, and mitigate DoS vulnerabilities. In particular, Polkadot enforces a limited time window for block
producers to create a block, including limitations on block size, which can make the selection and execution of certain extrinsics too expensive and
decelerate the network.

In contrast to some other systems, such as Ethereum, which implement fine measurement for each executed low-level operation by smart contracts,
known as gas metering, Polkadot takes a more relaxed approach by implementing a measuring system where the cost of the transactions (referred to
as ’extrinsics’) are determined before execution and are known as the weight system.

The Polkadot weight system introduces a mechanism for block producers to measure the cost of running the extrinsics and determine how "heavy" it is
in terms of execution time. Within this mechanism, block producers can select a set of extrinsics and saturate the block to its fullest potential without
exceeding any limitations (as described in Section 10.2.1.). Moreover, the weight system can be used to calculate a fee for executing each extrinsics
according to its weight (as described in Section 10.6.1.).

Additionally, Polkadot introduces a specified block ratio (as defined in Section 10.2.1.), ensuring that only a certain portion of the total block size gets
used for regular extrinsics. The remaining space is reserved for critical, operational extrinsics required for the functionality of Polkadot itself.

To begin, we introduce in Section 10.2. the assumption upon which the Polkadot transaction weight system is designed. In Section 10.2.1., we discuss
the limitation Polkadot needs to enforce on the block size. In Section 10.3., we describe in detail the procedure upon which the weight of any transaction
should be calculated. In Section 10.5., we present how we apply this procedure to compute the weight of particular runtime functions.

10.2. Assumptions

In this section, we define the concept of weight, and we discuss the considerations that need to be accounted for when assigning weight to transactions.
These considerations are essential in order for the weight system to deliver its fundamental mission, i.e. the fair distribution of network resources and
preventing a network overload. In this regard, weights serve as an indicator on whether a block is considered full and how much space is left for
remaining, pending extrinsics. Extrinsics that require too many resources are discarded. More formally, the weight system should:

prevent the block from being filled with too many extrinsics

avoid extrinsics where its execution takes too long, by assigning a transaction fee to each extrinsic proportional to their resource consumption.

These concepts are formalized in Definition 160 and Definition 163:

Definition 160. Block Length

Definition 161. Target Time per Block

Definition 162. Block Target Time

For a block with and the block length of , , is defined as the amount of raw bytes of .B Head B() Body B() B Len B() B

Ṯargeted time per block denoted by implies the amount of seconds that a new block should be produced by a validator. The transaction
weights must consider in order to set restrictions on time-intensive transactions in order to saturate the block to its fullest potential until

 is reached.

T B()
T B()

T B()

Available block ration reserved for normal, noted by , is defined as the maximum weight of none-operational transactions in the Body of
divided by .

R B() B

Len B()

https://spec.polkadot.network/id-weights#sect-limitations
https://spec.polkadot.network/id-weights#sect-fee-calculation
https://spec.polkadot.network/id-weights#sect-limitations
https://spec.polkadot.network/id-weights#sect-assumptions
https://spec.polkadot.network/id-weights#sect-limitations
https://spec.polkadot.network/id-weights#sect-runtime-primitives
https://spec.polkadot.network/id-weights#sect-practical-examples
https://spec.polkadot.network/id-weights#defn-block-length
https://spec.polkadot.network/id-weights#defn-polkadot-block-limits

Definition 163. Block Limits

Definition 164. Weight Function

10.2.1. Limitations

In this section, we discuss how applying the limitation defined in Definition 163 can be translated to limitation . In order to be able to translate those
into concrete numbers, we need to identify an arbitrary maximum weight to which we scale all other computations. For that, we first define the block
weight and then assume a maximum on its block length in Definition 165:

Definition 165. Block Weight

P̱olkadot block limits, as defined here, should be respected by each block producer for the produced block to be deemed valid:

 Bytes

 seconds

B

Len B ≤() 5 × 1 024 ×′ 1 024 =′ 5 242 880′ ′

T B =() 6

R B ≤() 0.75

The P̱olkadot transaction weight function denoted by as follows:

where is a non-negative integer representing the weight of the extrinsic . We define the weight of all inherent extrinsics as defined in the
Section 2.3.3. to be equal to 0. We extend the definition of function to compute the weight of the block as sum of weight of all extrinsics it
includes:

In the remainder of this section, we discuss the requirements to which the weight function needs to comply to.

Computations of function must be determined before execution of that .

Due to the limited time window, computations of must be done quickly and consume few resources themselves.

 must be self contained and must not require I/O on the chain state. must depend solely on the Runtime function representing
and its parameters.

Heuristically, "heaviness" corresponds to the execution time of an extrinsic. In that way, the value for various extrinsics should be proportional
to their execution time. For example, if Extrinsic A takes three times longer to execute than Extrinsic B, then Extrinsic A should roughly weighs 3
times of Extrinsic B. Or:

Nonetheless, can be manipulated depending on the priority of the chain is supposed to endorse.

W

W

W

: E → N
: E ↦ w

w E

W

W

W

: B → N

: B ↦ (W (E))
E∈B

∑

W E() E

W

W W E() E

W

W A ≈() 3 × W B()

W E() E

W

We define the block weight of block , formally denoted as , to be:

We require that:

B W B()

W B =() W E

n=0{ }

∑
E∣ ∣

((n))

W B <() 2 000 000 000 000′ ′ ′ ′

https://spec.polkadot.network/id-weights#defn-polkadot-block-limits
https://spec.polkadot.network/id-weights#defn-block-weight
https://spec.polkadot.network/chap-state#sect-inherents

The weights must fulfill the requirements as noted by the fundamentals and limitations and can be assigned as the author sees fit. As a simple example,
consider a maximum block weight of 1’000’000’000, an available ratio of 75%, and a targeted transaction throughput of 500 transactions. We could
assign the (average) weight for each transaction at about 1’500’000. Block producers have an economic incentive to include as many extrinsics as
possible (without exceeding limitations) into a block before reaching the targeted block time. Weights give indicators to block producers on which
extrinsics to include in order to reach the blocks fullest potential.

10.3. Calculation of the weight function

In order to calculate weight of block , , one needs to evaluate the weight of each transaction included in the block. Each transaction causes the
execution of certain Runtime functions. As such, to calculate the weight of a transaction, those functions must be analyzed in order to determine parts of
the code which can significantly contribute to the execution time and consume resources such as loops, I/O operations, and data manipulation.
Subsequently, the performance and execution time of each part will be evaluated based on variety of input parameters. Based on those observations,
weights are assigned Runtime functions or parameters which contribute to long execution times. These sub component of the code are discussed in
Section 10.4.1..

The general algorithm to calculate is described in the Section 10.4..

10.4. Benchmarking

Calculating the extrinsic weight solely based on the theoretical complexity of the underlying implementation proves to be too complicated and unreliable
at the same time. Certain decisions in the source code architecture, internal communication within the Runtime or other design choices could add
enough overhead to make the asymptotic complexity practically meaningless.

On the other hand, benchmarking an extrinsics in a black-box fashion could (using random parameters) most certainly results in missing corner cases
and worst case scenarios. Instead, we benchmark all available Runtime functions which are invoked in the course of execution of extrinsics with a large
collection of carefully selected input parameters and use the result of the benchmarking process to evaluate .

In order to select useful parameters, the Runtime functions have to be analyzed to fully understand which behaviors or conditions can result in
expensive execution times, which is described closer in Section 10.4.1.. Not every possible benchmarking outcome can be invoked by varying input
parameters of the Runtime function. In some circumstances, preliminary work is required before a specific benchmark can be reliably measured, such
as creating certain preexisting entries in the storage or other changes to the environment.

The Practical Examples (Section 10.5.) covers the analysis process and the implementation of preliminary work in more detail.

10.4.1. Primitive Types

The Runtime reuses components, known as "primitives", to interact with the state storage. The execution cost of those primitives can be measured and
a weight should be applied for each occurrence within the Runtime code.

For storage, Polkadot uses three different types of storage types across its modules, depending on the context:

Value: Operations on a single value. The final key-value pair is stored under the key:

Map: Operations on multiple values, datasets, where each entry has its corresponding, unique key. The final key-value pair is stored under the key:

Double map: Just like Map, but uses two keys instead of one. This type is also known as "child storage", where the first key is the "parent key" and
the second key is the "child key". This is useful in order to scope storage entries (child keys) under a certain context (parent key), which is
arbitrary. Therefore, one can have separated storage entries based on the context. The final key-value pair is stored under the key:

It depends on the functionality of the Runtime module (or its sub-processes, rather) which storage type to use. In some cases, only a single value is
required. In others, multiple values need to be fetched or inserted from/into the database.

B W B()

W E()

W E()

 hash(module_prefix) + hash(storage_prefix)

 hash(module_prefix) + hash(storage_prefix) + hash(encode(key))

 hash(module_prefix) + hash(storage_prefix)

 + hash(encode(key1)) + hash(encode(key2))

https://spec.polkadot.network/id-weights#sect-primitive-types
https://spec.polkadot.network/id-weights#sect-benchmarking
https://spec.polkadot.network/id-weights#sect-primitive-types
https://spec.polkadot.network/id-weights#sect-practical-examples

Those lower-level types get abstracted over in each individual Runtime module using the decl_storage! macro. Therefore, each module specifies its
own types that are used as input and output values. The abstractions do give indicators on what operations must be closely observed and where
potential performance penalties and attack vectors are possible.

10.4.1.1. Considerations

The storage layout is mostly the same for every primitive type, primarily differentiated by using special prefixes for the storage key. Big differences arise
on how the primitive types are used in the Runtime function, on whether single values or entire datasets are being worked on. Single value operations
are generally quite cheap and its execution time does not vary depending on the data that’s being processed. However, excessive overhead can appear
when I/O operations are executed repeatedly, such as in loops. Especially, when the amount of loop iterations can be influenced by the caller of the
function or by certain conditions in the state storage.

Maps, in contrast, have additional overhead when inserting or retrieving datasets, which vary in sizes. Additionally, the Runtime function has to process
each item inside that list.

Indicators for performance penalties:

Fixed iterations and datasets - Fixed iterations and datasets can increase the overall cost of the Runtime functions, but the execution time does
not vary depending on the input parameters or storage entries. A base Weight is appropriate in this case.

Adjustable iterations and datasets - If the amount of iterations or datasets depends on the input parameters of the caller or specific entries in
storage, then a certain weight should be applied for each (additional) iteration or item. The Runtime defines the maximum value for such cases. If it
doesn’t, it unconditionally has to and the Runtime module must be adjusted. When selecting parameters for benchmarking, the benchmarks should
range from the minimum value to the maximum value, as described in Definition 166.

Input parameters - Input parameters that users pass on to the Runtime function can result in expensive operations. Depending on the data type, it
can be appropriate to add additional weights based on certain properties, such as data size, assuming the data type allows varying sizes. The
Runtime must define limits on those properties. If it doesn’t, it unconditionally has to, and the Runtime module must be adjusted. When selecting
parameters for benchmarking, the benchmarks should range from the minimum values to the maximum value, as described in paragraph Definition
166.

Definition 166. Maximum Value

10.4.2. Parameters

The input parameters highly vary depending on the Runtime function and must therefore be carefully selected. The benchmarks should use input
parameters which will most likely be used in regular cases, as intended by the authors, but must also consider worst-case scenarios and inputs that
might decelerate or heavily impact the performance of the function. The input parameters should be randomized in order to cause various effects in
behaviors on certain values, such as memory relocations and other outcomes that can impact performance.

It’s not possible to benchmark every single value. However, one should select a range of inputs to benchmark, spanning from the minimum value to the
maximum value, which will most likely exceed the expected usage of that function. This is described in more detail in Section 10.4.1.1.. The
benchmarks should run individual executions/iterations within that range, where the chosen parameters should give insight on the execution time.
Selecting imprecise parameters or too extreme ranges might indicate an inaccurate result of the function as it will be used in production. Therefore,
when a range of input parameters gets benchmarked, the result of each individual parameter should be recorded and optionally visualized, then the
necessary adjustment can be made. Generally, the worst-case scenario should be assigned as the weight value for the corresponding runtime function.

Additionally, given the distinction between theoretical and practical usage, the author reserves the right to make adjustments to the input parameters
and assign weights according to the observed behavior of the actual, real-world network.

10.4.2.1. Weight Refunds

When assigning the final weight, the worst-case scenario of each runtime function should be used. The runtime can then additional "refund" the amount
of weights which were overestimated once the runtime function is actually executed.

The Polkadot runtime only returns weights if the difference between the assigned weight and the actual weight calculated during execution is greater
than 20%.

What the maximum value should be really depends on the functionality that the Runtime function is trying to provide. If the choice for that value is
not obvious, then it’s advised to run benchmarks on a big range of values and pick a conservative value below the targeted time per block

limit as described in section Section 10.2.1..

https://spec.polkadot.network/id-weights#defn-max-value
https://spec.polkadot.network/id-weights#defn-max-value
https://spec.polkadot.network/id-weights#defn-max-value
https://spec.polkadot.network/id-weights#sect-primitive-types-considerations
https://spec.polkadot.network/id-weights#sect-limitations

10.4.3. Storage I/O cost

It is advised to benchmark the raw I/O operations of the database and assign "base weights" for each I/O operation type, such as insertion, deletion,
querying, etc. When a runtime function is executed, the runtime can then add those base weights of each used operation in order to calculate the final
weight.

10.4.4. Environment

The benchmarks should be executed on clean systems without interference of other processes or software. Additionally, the benchmarks should be
executed on multiple machines with different system resources, such as CPU performance, CPU cores, RAM, and storage speed.

10.5. Practical examples

This section walks through Runtime functions available in the Polkadot Runtime to demonstrate the analysis process as described in Section 10.4.1..

In order for certain benchmarks to produce conditions where resource heavy computation or excessive I/O can be observed, the benchmarks might
require some preliminary work on the environment, since those conditions cannot be created with simply selected parameters. The analysis process
shows indicators on how the preliminary work should be implemented.

10.5.1. Practical Example #1: request_judgement

In Polkadot, accounts can save information about themselves on-chain, known as the "Identity Info". This includes information such as display name,
legal name, email address and so on. Polkadot offers a set of trusted registrars, entities elected by a Polkadot public referendum, which can verify the
specified contact addresses of the identities, such as Email, and vouch on whether the identity actually owns those accounts. This can be achieved, for
example, by sending a challenge to the specified address and requesting a signature as a response. The verification is done off-chain, while the final
judgement is saved on-chain, directly in the corresponding Identity Info. It’s also noteworthy that Identity Info can contain additional fields, set manually
by the corresponding account holder.

Information such as legal name must be verified by ID card or passport submission.

The function request_judgement from the identity pallet allows users to request judgment from a specific registrar.

req_index : the index which is assigned to the registrar.

max_fee : the maximum fee the requester is willing to pay. The judgment fee varies for each registrar.

Studying this function reveals multiple design choices that can impact performance, as it will be revealed by this analysis.

10.5.1.1. Analysis

First, it fetches a list of current registrars from storage and then searches that list for the specified registrar index.

Then, it searches for the Identity Info from storage, based on the sender of the transaction.

The Identity Info contains all fields that have a data in them, set by the corresponding owner of the identity, in an ordered form. It then proceeds to
search for the specific field type that will be inserted or updated, such as email address. If the entry can be found, the corresponding value is to the
value passed on as the function parameters (assuming the registrar is not "stickied", which implies it cannot be changed). If the entry cannot be found,
the value is inserted into the index where a matching element can be inserted while maintaining sorted order. This results in memory reallocation, which
increases resource consumption.

(func $request_judgement (param $req_index int) (param $max_fee int))

let registrars = <Registrars<T>>::get();

let registrar = registrars.get(reg_index as usize).and_then(Option::as_ref)

 .ok_or(Error::<T>::EmptyIndex)?;

let mut id = <IdentityOf<T>>::get(&sender).ok_or(Error::<T>::NoIdentity)?;

https://spec.polkadot.network/id-weights#sect-primitive-types

In the end, the function deposits the specified max_fee balance, which can later be redeemed by the registrar. Then, an event is created to insert the
Identity Info into storage. The creation of events is lightweight, but its execution is what will actually commit the state changes.

10.5.1.2. Considerations

The following points must be considered:

Varying count of registrars.

Varying count of preexisting accounts in storage.

The specified registrar is searched for in the Identity Info. An identity can be judged by as many registrars as the identity owner issues requests,
therefore increasing its footprint in the state storage. Additionally, if a new value gets inserted into the byte array, memory gets reallocated.
Depending on the size of the Identity Info, the execution time can vary.

The Identity-Info can contain only a few fields or many. It is legitimate to introduce additional weights for changes the owner/sender has influence
over, such as the additional fields in the Identity-Info.

10.5.1.3. Benchmarking Framework

The Polkadot Runtime specifies the MaxRegistrars constant, which will prevent the list of registrars of reaching an undesired length. This value
should have some influence on the benchmarking process.

The benchmarking implementation of for the function can be defined as follows:

Algorithm 27. request_judgement Runtime Function Benchmark

match id.judgements.binary_search_by_key(®_index, |x| x.0) {

 Ok(i) => if id.judgements[i].1.is_sticky() {

 Err(Error::<T>::StickyJudgement)?

 } else {

 id.judgements[i] = item

 },

 Err(i) => id.judgements.insert(i, item),

}

T::Currency::reserve(&sender, registrar.fee)?;

<IdentityOf<T>>::insert(&sender, id);

Self::deposit_event(RawEvent::JudgementRequested(sender, reg_index));

request judgement

Algorithm "request_judgement"` Runtime function benchmark

Ensure:
init
for do

GENERATE-REGISTRARS()
 CREATE-ACCOUNT()

SET-BALANCE()
 TIMER(REQUEST-JUDGEMENT(RANDOM()))

ADD-TO()
end for

 COMPUTE-WEIGHT()
return

where

Generate-Registrars()

Creates a number of registrars and inserts those records into storage.

Create-Account(,)

Creates a Blake2 hash of the concatenated input of name and index represent- ing the address of an account. This function only creates an
address and does not conduct any I/O.

W

1: collection = {}
2: amount ← 1,MaxRegistrars

3: amount

4: caller ← caller, 1
5: caller, 100
6: time ← amount , 100
7: collection, time
8:

9: W ← collection

10: W

amount

name index

10.5.2. Practical Example #2: payout_stakers

10.5.2.1. Analysis

The function payout_stakers from the staking Pallet can be called by a single account in order to payout the reward for all nominators who back a
particular validator. The reward also covers the validator’s share. This function is interesting because it iterates over a range of nominators, which
varies, and does I/O operations for each of them.

First, this function makes a few basic checks to verify if the specified era is not higher then the current era (as it is not in the future) and is within the
allowed range also known as "history depth", as specified by the Runtime. After that, it fetches the era payout from storage and additionally verifies
whether the specified account is indeed a validator and receives the corresponding "Ledger". The Ledger keeps information about the stash key,
controller key, and other information such as actively bonded balance and a list of tracked rewards. The function only retains the entries of the history
depth and conducts a binary search for the specified era.

The retained claimed rewards are inserted back into storage.

As an optimization, Runtime only fetches a list of the 64 highest-staked nominators, although this might be changed in the future. Accordingly, any
lower-staked nominator gets no reward.

Next, the function gets the era reward points from storage.

Set-Balance(,)

Sets an initial balance for the specified account in the storage state.

Timer()

Measures the time from the start of the specified function to its completion.

Request-Judgement(,)

Calls the corresponding request_judgement Runtime function and passes on the required parameters.

Random()

Picks a random number between 0 and num. This should be used when the benchmark should account for unpredictable values.

Add-To(,)

Adds a returned time measurement (time) to collection.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst-case scenario should be chosen (the highest
value).

amount balance

function

registrar index max fee

num

collection time

collection

let era_payout = <ErasValidatorReward<T>>::get(&era)

 .ok_or_else(|| Error::<T>::InvalidEraToReward)?;

let controller = Self::bonded(&validator_stash).ok_or(Error::<T>::NotStash)?;

let mut ledger = <Ledger<T>>::get(&controller).ok_or_else(|| Error::<T>::NotController)?;

ledger.claimed_rewards.retain(|&x| x >= current_era.saturating_sub(history_depth));

match ledger.claimed_rewards.binary_search(&era) {

 Ok(_) => Err(Error::<T>::AlreadyClaimed)?,

 Err(pos) => ledger.claimed_rewards.insert(pos, era),

}

<Ledger<T>>::insert(&controller, &ledger);

let exposure = <ErasStakersClipped<T>>::get(&era, &ledger.stash);

After that, the payout is split among the validator and its nominators. The validators receive the payment first, creating an insertion into storage and
sending a deposit event to the scheduler.

Then, the nominators receive their payout rewards. The functions loop over the nominator list, conducting an insertion into storage and a creation of a
deposit event for each of the nominators.

10.5.2.2. Considerations

The following points must be considered:

The Ledger contains a varying list of claimed rewards. Fetching, retaining, and searching through it can affect execution time. The retained list is
inserted back into storage.

Looping through a list of nominators and creating I/O operations for each increases execution time. The Runtime fetches up to 64 nominators.

10.5.2.3. Benchmarking Framework

Definition 167. History Depth

Definition 168. Maximum Nominator Reward

The benchmarking implementation for the function can be defined as follows:

Algorithm 28. payout_stakers Runtime Function Benchmark

let era_reward_points = <ErasRewardPoints<T>>::get(&era);

if let Some(imbalance) = Self::make_payout(

 &ledger.stash,

 validator_staking_payout + validator_commission_payout

) {

 Self::deposit_event(RawEvent::Reward(ledger.stash, imbalance.peek()));

}

for nominator in exposure.others.iter() {

 let nominator_exposure_part = Perbill::from_rational_approximation(

 nominator.value,

 exposure.total,

);

 let nominator_reward: BalanceOf<T> = nominator_exposure_part * validator_leftover_payout;

 // We can now make nominator payout:

 if let Some(imbalance) = Self::make_payout(&nominator.who, nominator_reward) {

 Self::deposit_event(RawEvent::Reward(nominator.who.clone(), imbalance.peek()));

 }

}

H̱istory Depth indicated as MaxNominatorRewardedPerValidator is a fixed constant specified by the Polkadot Runtime which dictates the
number of Eras the Runtime will reward nominators and validators for.

M̱aximum Nominator Rewarded Per Validator indicated as MaxNominatorRewardedPerValidator , specifies the maximum amount of the
highest-staked nominators which will get a reward. Those values should have some influence in the benchmarking process.

payout stakers

Algorithm "payout_stakers"` Runtime function benchmark

Ensure:
init
for do

W

1: collection = {}
2: amount ← 1,MaxNominatorRewardedPerValidator

10.5.3. Practical Example #3: transfer

The function of the balances module is designed to move the specified balance by the sender to the receiver.

10.5.3.1. Analysis

The source code of this function is quite short:

for do
 GENERATE-VALIDATOR()

VALIDATE()
 GENERATE-NOMINATORS()

for do
NOMINATE()

end for
 CREATE-REWARDS()

 TIMER(PAYOUT-STAKERS())
ADD-TO()

end for
end for

 COMPUTE-WEIGHT()
return

where

Generate-Validator()

Creates a validator with some unbonded balances.

Validate()

Bonds balances of validator and bonds balances.

Generate-Nominators()

Creates the amount of nominators with some unbonded balances.

Nominate(,)

Starts nomination of nominator for validator by bonding balances.

Create-Rewards(, ,)

Starts an Era and creates pending rewards for validator and nominators.

Timer()

Measures the time from the start of the specified function to its completion.

Add-To(,)

Adds a returned time measurement (time) to collection.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst-case scenario should be chosen (the highest
value).

3: era_depth ← 1,HistoryDepth
4: validator ←
5: validator

6: nominators ← amount

7: nominator ∈ nominators

8: validator,nominator
9:

10: era_index ← validator,nominators, era_depth
11: time ← validator , era_index
12: collection, time
13:

14:

15: W ← collection

16: W

validator

amount

validator nominator

validator nominators era depth

function

collection time

collection

transfer

let transactor = ensure_signed(origin)?;

let dest = T::Lookup::lookup(dest)?;

<Self as Currency<_>>::transfer(

 &transactor,

 &dest,

 value,

 ExistenceRequirement::AllowDeath

)?;

However, one needs to pay close attention to the property AllowDeath and to how the function treats existings and non-existing accounts differently.
Two types of behaviors are to consider:

If the transfer completely depletes the sender account balance to zero (or below the minimum "keep-alive" requirement), it removes the address
and all associated data from storage.

If the recipient account has no balance, the transfer also needs to create the recipient account.

10.5.3.2. Considerations

Specific parameters can could have a significant impact for this specific function. In order to trigger the two behaviors mentioned above, the following
parameters are selected:

Type From To Description

Account index index in… 1 1000 Used as a seed for account creation

Balance balance in… 2 1000 Sender balance and transfer amount

Executing a benchmark for each balance increment within the balance range for each index increment within the index range will generate too many
variants () and highly increase execution time. Therefore, this benchmark is configured to first set the balance at value 1’000 and then to
iterate from 1 to 1’000 for the index value. Once the index value reaches 1’000, the balance value will reset to 2 and iterate to 1’000 (see "transfer"
Runtime function benchmark for more detail):

index : 1, balance : 1000

index : 2, balance : 1000

index : 3, balance : 1000

…

index : 1000, balance : 1000

index : 1000, balance : 2

index : 1000, balance : 3

index : 1000, balance : 4

…

The parameters themselves do not influence or trigger the two worst conditions and must be handled by the implemented benchmarking tool. The
 benchmark is implemented as defined in "transfer" Runtime function benchmark.

10.5.3.3. Benchmarking Framework

The benchmarking implementation for the Polkadot Runtime function is defined as follows (starting with the Main function):

Algorithm 29. transfer Runtime Function Benchmark

1000 × 999

transfer

transfer

Algorithm "transfer" Runtime function benchmark

Ensure: : a collection of time measurements of all benchmark iterations
function MAIN()

init
init
for do

 RUN-BENCHMARK()
ADD-TO()

end for
init
for do

 RUN-BENCHMARK()
ADD-TO()

end for

collection

1:

2: collection = {}
3: balance = 1 000′

4: index ← 1, 1 000′

5: time ← index, balance
6: collection, time
7:

8: index = 1 000′

9: balance ← 2, 1 000′

10: time ← index, balance
11: collection, time
12:

https://spec.polkadot.network/id-weights#algo-benchmark-transfer
https://spec.polkadot.network/id-weights#algo-benchmark-transfer
https://spec.polkadot.network/id-weights#algo-benchmark-transfer

10.5.4. Practical Example #4: withdraw_unbonded

The withdraw_unbonded function of the staking module is designed to move any unlocked funds from the staking management system to be ready

for transfer. It contains some operations which have some I/O overhead.

10.5.4.1. Analysis

Similarly to the payout_stakers function (Section 10.5.2.), this function fetches the Ledger which contains information about the stash, such as
bonded balance and unlocking balance (balance that will eventually be freed and can be withdrawn).

The function consolidate_unlocked does some cleaning up on the ledger, where it removes outdated entries from the unlocking balance (which
implies that balance is now free and is no longer awaiting unlock).

 COMPUTE-WEIGHT()
return

end function
function RUN-BENCHMARK(,)

 CREATE-ACCOUNT()
 CREATE-ACCOUNY()

SET-BALANCE()
 TIMER(TRANSFER())

return
end function

where

Create-Account(,)

Creates a Blake2 hash of the concatenated input of name and index representing the address of a account. This function only creates an
address and does not conduct any I/O.

Set-Balance(,)

Sets a initial balance for the specified account in the storage state.

Transfer(, ,)

Transfers the specified balance from sender to recipient by calling the corresponding Runtime function. This represents the target Runtime
function to be benchmarked.

Add-To(,)

Adds a returned time measurement (time) to collection.

Timer()

Adds a returned time measurement (time) to collection.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst case scenario should be chosen (the highest
value).

13: W ← collection

14: W

15:

16: index balance

17: sender ← caller, index
18: recipient ← recipient, index
19: sender, balance
20: time ← sender, recipient, balance
21: time

22:

name index

account balance

sender recipient balance

collection time

function

collection

if let Some(current_era) = Self::current_era() {

 ledger = ledger.consolidate_unlocked(current_era)

}

https://spec.polkadot.network/id-weights#sect-practical-example-payout-stakers

This function does a check on wether the updated ledger has any balance left in regards to staking, both in terms of locked, staking balance and
unlocking balance. If not amount is left, the all information related to the stash will be deleted. This results in multiple I/O calls.

The resulting call to Self::kill_stash() triggers:

Alternatively, if there’s some balance left, the adjusted ledger simply gets updated back into storage.

Finally, it withdraws the unlocked balance, making it ready for transfer:

10.5.4.2. Parameters

The following parameters are selected:

Type From To Description

Account index index in… 0 1000 Used as a seed for account creation

This benchmark does not require complex parameters. The values are used solely for account generation.

10.5.4.3. Considerations

Two important points in the withdraw_unbonded function must be considered. The benchmarks should trigger both conditions

The updated ledger is inserted back into storage.

If the stash gets killed, then multiple, repetitive deletion calls are performed in the storage.

let mut total = self.total;

let unlocking = self.unlocking.into_iter()

 .filter(|chunk| if chunk.era > current_era {

 true

 } else {

 total = total.saturating_sub(chunk.value);

 false

 })

 .collect();

if ledger.unlocking.is_empty() && ledger.active.is_zero() {

 // This account must have called `unbond()` with some value that caused the active

 // portion to fall below existential deposit + will have no more unlocking chunks

 // left. We can now safely remove all staking-related information.

 Self::kill_stash(&stash, num_slashing_spans)?;

 // remove the lock.

 T::Currency::remove_lock(STAKING_ID, &stash);

 // This is worst case scenario, so we use the full weight and return None

 None

}

clear_stash_metadata::<T>(stash, num_slashing_spans)?;

<Bonded<T>>::remove(stash);

<Ledger<T>>::remove(&controller);

<Payee<T>>::remove(stash);

<Validators<T>>::remove(stash);

<Nominators<T>>::remove(stash);

slashing::

// This was the consequence of a partial unbond. just update the ledger and move on.

Self::update_ledger(&controller, &ledger);

let value = old_total - ledger.total;

Self::deposit_event(RawEvent::Withdrawn(stash, value));

10.5.4.4. Benchmarking Framework

The benchmarking implementation for the Polkadot Runtime function withdraw_unbonded is defined as follows:

Algorithm 30. withdraw_unbonded Runtime Function Benchmark

Algorithm "withdraw_unbonded" Runtime function benchmark

Ensure:
function MAIN()

init
for do

 CREATE-ACCOUNT()
 CREATE-ACCOUNT()

SET-BALANCE()
SET-BALANCE()
BOND()
PASS-ERA()
UNBOND()
PASS-ERA()

 TIMER(WITHDRAW-UNBONDED())
ADD-TO()

end for
 COMPUTE-WEIGHT()

return
end function

where

Create-Account(,)

Creates a Blake2 hash of the concatenated input of name and index representing the address of a account. This function only creates an
address and does not conduct any I/O.

Set-Balance(,)

Sets a initial balance for the specified account in the storage state.

Bond(, ,)

Bonds the specified amount for the stash and controller pair.

UnBond(,)

Unbonds the specified amount for the given account.

Pass-Era()

Pass one era. Forces the function withdraw_unbonded to update the ledger and eventually delete information.

Withdraw-Unbonded()

Withdraws the the full unbonded amount of the specified controller account. This represents the target Runtime function to be benchmarked.

Add-To(,)

Adds a returned time measurement (time) to collection.

Timer()

Measures the time from the start of the specified f unction to its completion.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst case scenario should be chosen (the highest
value).

W

1:

2: collection = {}
3: balance ← 1, 100
4: stash ← stash, 1
5: controller ← controller, 1
6: stash, 100
7: controller, 1
8: stash, controller, balance
9:

10: controller, balance
11:

12: time ← controller

13: collection, time
14:

15: W ← collection

16: W

17:

name index

amount balance

stash controller amount

account amount

controller

collection time

function

collection

10.6. Fees

Block producers charge a fee in order to be economically sustainable. That fee must always be covered by the sender of the transaction. Polkadot has
a flexible mechanism to determine the minimum cost to include transactions in a block.

10.6.1. Fee Calculation

Polkadot fees consists of three parts:

Base fee: a fixed fee that is applied to every transaction and set by the Runtime.

Length fee: a fee that gets multiplied by the length of the transaction, in bytes.

Weight fee: a fee for each, varying Runtime function. Runtime implementers need to implement a conversion mechanism which determines the
corresponding currency amount for the calculated weight.

The final fee can be summarized as:

10.6.2. Definitions in Polkadot

The Polkadot Runtime defines the following values:

Base fee: 1 mDOTs . Base Fee is defined as the fee for a No-op extrinsic (for e.g., an empty System::Remark call, currently with a
weight of 126 micro Seconds).

Length fee: 0.1 uDOTs

Weight to fee conversion:

 fee = where is in nS.

A weight of 126’000 nS is mapped to 1 mDOT. This fee will never exceed the max size of an unsigned 128 bit integer.

10.6.3. Fee Multiplier

Polkadot can add a additional fee to transactions if the network becomes too busy and starts to decelerate the system. This fee can create an incentive
to avoid the production of low priority or insignificant transactions. In contrast, those additional fees will decrease if the network calms down and it can
execute transactions without much difficulties.

That additional fee is known as the Fee Multiplier and its value is defined by the Polkadot Runtime. The multiplier works by comparing the
saturation of blocks; if the previous block is less saturated than the current block (implying an uptrend), the fee is slightly increased. Similarly, if the
previous block is more saturated than the current block (implying a downtrend), the fee is slightly decreased.

The final fee is calculated as:

10.6.3.1. Update Multiplier

The Update Multiplier defines how the multiplier can change. The Polkadot Runtime internally updates the multiplier after each block according the
following formula:

Polkadot defines the target_weight as 0.25 (25%). More information about this algorithm is described in the Web3 Foundation research paper.

fee = base fee

+ length of transaction in bytes × length fee

+ weight to fee

(10 DOT)−3

weight weight/1.26 ∗ (10)−8 weight

finalfee = fee × FeeMultiplier

diff

v

next weight

=

=

=

(target weight − previous block weight)

0.00004

weight × (1 + (v × diff) + (v × diff) /2)2

https://research.web3.foundation/Polkadot/overview/token-economics#relay-chain-transaction-fees-and-per-block-transaction-limits

11. Consensus

11.1. BABE digest messages

The Runtime is required to provide the BABE authority list and randomness to the host via a consensus message in the header of the first block of each
epoch.

The digest published in Epoch is enacted in . The randomness in this digest is computed based on all the VRF outputs up to including Epoch
 while the authority set is based on all transaction included up to Epoch .

The computation of the randomness seed is described in Epoch-Randomness, which uses the concept of epoch subchain as described in host
specification and the value , which is the VRF output computed for slot .

Algorithm 31. Epoch Randomness

E n E n+1

E n−2 E n−1

d B s B

Algorithm Epoch-Randomness

Require:
init
for in SUBCHAIN() do

end for
return BLAKE2B(EPOCH-RANDOMNESS())

where is the epoch index.

n > 2
1: ρ ← ϕ

2: B E n−2

3: ρ ← ρ∣∣d B

4:

5: n − 1 ∣∣n∣∣ρ

n

https://spec.polkadot.network/id-consensus#algo-epoch-randomness

12. Metadata
The runtime metadata structure contains all the information necessary on how to interact with the Polkadot runtime. Considering that Polkadot runtimes
are upgradable and, therefore, any interfaces are subject to change, the metadata allows developers to structure any extrinsics or storage entries
accordingly.

The metadata of a runtime is provided by a call to Metadata_metadata (Section C.5.1.) and is returned as a scale encoded (Section A.2.2.) binary
blob. How to interpret and decode this data is described in this chapter.

12.1. Structure

The Runtime Metadata is a data structure of the following format:

where

 are the first four constant bytes, spelling "meta" in ASCII.

 is an unsigned 8-bit integer indicating the format version of the metadata structure (currently the value of 14).

 is a sequence (Definition 202) of type definitions (Definition 169).

 is a sequence (Definition 202) of pallet metadata (Section 12.2.).

 is the type Id (Definition 170) of the extrinsics.

 is an unsigned 8-bit integer indicating the format version of the extrinsics (implying a possible breaking change).

 is a sequence (Definition 202) of extrinsics metadata (Definition 180).

 is the type Id (Definition 170) of the runtime.

Image 8. Metadata

Metadata

pos size type id
0 4 magic
4 1 u1 metadata_version
5 ... Scale::CompactInt num_types
... ... MetadataType types

repeat num_types.value times
... ... Scale::CompactInt num_pallets
... ... MetadataPallet pallets

repeat num_pallets.value times
... ... Scale::CompactInt extrinsic_type
... 1 u1 extrinsic_version
... ... Scale::CompactInt num_extrinsics
... ... MetadataExtrinsic extrinsics

repeat num_extrinsics.value times
... ... Scale::CompactInt runtime_type

MetadataType

MetadataPallet

MetadataExtrinsic

M , v ,R,P , t , v ,E, t (m e e r)

R = r , … , r (0 n)

P = p , … , p (0 n)

E = e , … , e (0 n)

M

v m

R r i

P p i

t e

v e

E e i

t r

https://spec.polkadot.network/chap-runtime-api#sect-rte-metadata-metadata
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-registry-entry
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#sect-rtm-pallet-metadata
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-signed-extension-metadata
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#img-metadata-type
https://spec.polkadot.network/sect-metadata#img-metadata-pallet
https://spec.polkadot.network/sect-metadata#img-metadata-extrinsic

Definition 169. Runtime Registry Type Entry

Definition 170. Runtime Type Id

Definition 171. Type Variant

A registry entry contains information about a type in its portable form for serialization. The entry is a data structure of the following format:

where

 is a compact integer indicating the identifier of the type.

 is the path of the type, optional and based on the source file location. Encoded as a sequence (Definition 202) of strings.

 is a sequence (Definition 202) of generic parameters (empty for non-generic types).

 is the name string of the generic type parameter

 is a Option type containing a type Id (Definition 170).

 is the type definition (Definition 171).

 is the documentation as sequence (Definition 202) of strings.

Image 9. Metadata Type

MetadataType

MetadataType::Param

pos size type id
0 ... Scale::CompactInt id
... ... Scale::StringList path
... ... Scale::CompactInt num_params
... ... Param params

repeat num_params.value times
... ... MetadataTypeDefinition definition
... ... Scale::StringList docs

pos size type id
0 ... Scale::String name
... ... Scale::MaybeCompactInt type

MetadataTypeDefinition

r =i id , p,T ,D, c(t)

T = t , … , t (0 n)

t =i n, y()

idt

p

T

n

y

D

c

The runtime type Id is a compact integer representing the index of the entry (Definition 169) in or of the runtime metadata structure
(Section 12.1.), depending on context (starting at).

R,P E

0

The type definition is a varying datatype (Definition 198) and indicates all the possible types of encodable values a type can have.D

D =

⎩

⎨

⎧0
1
2
3
4
5
6
7

→
→
→
→
→
→
→
→

C

V

s v

S

T

P

e

B

composite type (e.g. structure or tuple)
variant type

sequence type varying length
sequence with fixed length

tuple type
primitive type

compact encoded type
sequence of bits

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-definition
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#img-metadata-type-definition
https://spec.polkadot.network/sect-metadata#defn-rtm-registry-entry
https://spec.polkadot.network/sect-metadata#sect-rtm-structure
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

where

 is a sequence of the following format:

 is a field (Definition 172).

 is a sequence of the following format:

 is a variant (Definition 173).

 is a type Id (Definition 170).

 is of the following format:

 is an unsigned 32-bit integer indicating the length

 is a type Id (Definition 170).

 is a sequence (Definition 202) of type Ids (Definition 170).

 is a varying datatype (Definition 198) of the following structure:

 is a type Id (Definition 170).

 is a data structure of the following format:

 is a type Id (Definition 170) representing the bit store order (external reference)

 is a type Id (Definition 170) the bit order type (external reference).

Image 10. Metadata Type Definition

C

C = f , … , f (0 n)

f i

V

V = v , … , v (0 n)

v i

s v

S

S = l, y()

l

y

T

P

P =

⎩

⎨

⎧ 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

boolean
char

string
unsigned 8-bit integer
unsigned 16-bit integer
unsigned 32-bit integer
unsigned 64-bit integer

unsigned 128-bit integer
unsigned 256-bit integer

signed 8-bit integer
signed 16-bit integer
signed 32-bit integer
signed 64-bit integer
signed 128-bit integer
signed 256-bit integer

e

B

B = s, o()

s

o

https://spec.polkadot.network/sect-metadata#defn-rtm-field
https://spec.polkadot.network/sect-metadata#defn-rtm-variant
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://docs.rs/bitvec/latest/bitvec/store/trait.BitStore.html
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://docs.rs/bitvec/latest/bitvec/order/trait.BitOrder.html

Definition 172. Field

MetadataTypeDefinition

MetadataTypeDefinition::Array

MetadataTypeDefinition::Sequence

MetadataTypeDefinition::Primitive

MetadataTypeDefinition::Tuple

MetadataTypeDefinition::Bits

MetadataTypeDefinition::Compact

pos size type id
0 1 u1→Type type
1 ... switch (type) details

case type
:type_composite MetadataTypeFields

:type_bits Bits
:type_array Array

:type_sequence Sequence
:type_primitive Primitive
:type_compact Compact
:type_variant MetadataTypeVariants
:type_tuple Tuple

pos size type id
0 4 u4le length
4 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 1 u1→Pid id

pos size type id
0 ... Scale::CompactInt num_types
... ... Scale::CompactInt types

repeat num_types.value times

pos size type id
0 ... Scale::CompactInt type
... ... Scale::CompactInt order

pos size type id
0 ... Scale::CompactInt type

MetadataTypeFields

MetadataTypeVariants

A field of a data structure of the following format:

where

 is an Option type containing the string that indicates the field name.

 is a type Id (Definition 170).

 is an Option type containing a string that indicates the name of the type as it appears in the source code.

 is a sequence of varying length containing strings of documentation.

Image 11. Metadata Type Fields

f = n, y, y ,Ci (n)

n

y

y n

C

https://spec.polkadot.network/sect-metadata#img-metadata-type-fields
https://spec.polkadot.network/sect-metadata#img-metadata-type-variants
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id

Definition 173. Variant

12.2. Pallet Metadata

All the metadata about a pallet, part of the main structure (Section 12.1.) and of the following format:

where

 is a string representing the pallet name.

 is an Option type containing the pallet storage metadata (Definition 174).

 is an Option type (Definition 200) containing the type Id (Definition 170) of pallet calls.

 is an Option type (Definition 200) containing the type Id (Definition 170) of pallet events.

 is an Sequence (Definition 202) of all pallet constant metadata (Definition 179).

 is an Option type (Definition 200) containing the type Id (Definition 170) of the pallet error.

 is an unsigned 8-bit integer indicating the index of the pallet, which is used for encoding pallet events and calls.

MetadataTypeFields

MetadataTypeFields::Field
pos size type id
0 ... Scale::CompactInt num_fields
... ... Field fields

repeat num_fields.value times

pos size type id
0 ... Scale::MaybeString name
... ... Scale::CompactInt type
... ... Scale::MaybeString typename
... ... Scale::StringList docs

A struct variant of the following format:

where

 is a string representing the name of the variant.

 is a possible empty array of varying length containing field (Definition 172) elements.

 is an unsigned 8-bit integer indicating the index of the variant.

 is a sequence of strings containing the documentation.

Image 12. Metadata Type Variants

MetadataTypeVariants

MetadataTypeVariants::Variant

pos size type id
0 ... Scale::CompactInt num_variants
... ... Variant variants

repeat num_variants.value times

pos size type id
0 ... Scale::String name
... ... MetadataTypeFields composite
... 1 u1 index
... ... Scale::StringList docs

MetadataTypeFields

v =i n,F , k,C()

n

F

k

C

p =i n,S, a, e,C, e, i()

n

S

a

e

C

e

i

https://spec.polkadot.network/sect-metadata#sect-rtm-structure
https://spec.polkadot.network/sect-metadata#defn-rtm-pallet-storage-metadata
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-pallet-constants
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-field
https://spec.polkadot.network/sect-metadata#img-metadata-type-fields

Image 13. Metadata Pallet

MetadataPallet

MetadataPallet::Calls

MetadataPallet::Events

MetadataPallet::Errors

pos size type id
0 ... Scale::String name
... 1 u1 has_storage
... ... PalletStorage storage
... 1 u1 has_calls
... ... Calls calls
... 1 u1 has_events
... ... Events events
... ... Scale::CompactInt num_constants
... ... PalletConstant constants

repeat num_constants.value times
... 1 u1 has_errors
... ... Errors errors
... 1 u1 index

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt type

PalletStorage

PalletConstant

Definition 174. Pallet Storage Metadata

Definition 175. Storage Entry Metadata

The metadata about pallets storage.

where

 is the string representing the common prefix used by all storage entries.

 is an array of varying lengths containing elements of storage entries (Definition 175).

S = p,E()

E = e , … , e (0 n)

p

E

The metadata about a pallets storage entry.

where

 is the string representing the variable name of the storage entry.

 is an enum type determining the storage entry modifier (Definition 176).

 is the type of the value stored in the entry (Definition 177).

 is a byte array containing the default value.

e =i n,m, y, d,C()

C = c , … , c (0 n)

n

m

y

d

https://spec.polkadot.network/sect-metadata#img-pallet-storage
https://spec.polkadot.network/sect-metadata#img-pallet-constant
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-metadata
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-modifier
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-type

Definition 176. Storage Entry Modifier

Definition 177. Storage Entry Type

 is an array of varying lengths of strings containing the documentation.

Image 14. Pallet Storage

PalletStorage

PalletStorage::Item

pos size type id
0 ... Scale::String prefix
... ... Scale::CompactInt num_items
... ... Item items

repeat num_items.value times

pos size type id
0 ... Scale::String name
... 1 u1→StorageModifier modifier
... ... StorageDefinition definition
... ... Scale::Bytes fallback
... ... Scale::StringList docs

StorageDefinition

C

The storage entry modifier is a varying datatype (Definition 198) and indicates how the storage entry is returned and how it behaves if the entry is
not present.

where 0 indicates that the entry returns an Option type and therefore None if the storage entry is not present. 1 indicates that the entry returns the
type with default value (in Definition 175) if the entry is not present.

INFO

This might be incorrect and has to be reviewed.

m = {
0
1

optional
default

y d

The type of the storage value is a varying datatype (Definition 198) that indicates how the entry is stored.

where , (key) and (value) are all of type Ids (Definition 170). is an array of varying length containing the storage hasher (Definition 178).

Image 15. Storage Definition

StorageDefinition

StorageDefinition::Plain

StorageDefinition::Map

pos size type id
0 1 u1→StorageType type
1 ... switch (type) details

case type
:storage_type_plain Plain
:storage_type_map Map

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt num_hasher
... 1 u1→HasherType hasher

repeat num_hasher.value times
... ... Scale::CompactInt key
... ... Scale::CompactInt value

y = {
0
1

→
→

t

H, k, v()
plain type

storage map

t k v H

https://spec.polkadot.network/sect-metadata#img-storage-definition
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-metadata
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-hasher

Definition 178. Storage Hasher

Definition 179. Pallet Constants

12.3. Extrinsic Metadata

The metadata about a pallets extrinsics, part of the main structure (Section 12.1.) and of the following format:

Definition 180. Signed Extension Metadata

The hashing algorithm is used by storage maps.

⎩

⎨

⎧0
1
2
3
4
5
6

128-bit Blake2 hash
256-bit Blake2 hash

Multiple 128-bit Blake2 hashes concatenated
128-bit XX hash
256-bit XX hash

Multiple 64-bit XX hashes concatenated
Identity hashing

The metadata about the pallets constants.

where

 is a string representing the name of the pallet constant.

 is the type Id (Definition 170) of the pallet constant.

 is a byte array containing the value of the constant.

 is an array of varying lengths containing a string with the documentation.

Image 16. Pallet Constant

PalletConstant

pos size type id
0 ... Scale::String name
... ... Scale::CompactInt type
... ... Scale::Bytes value
... ... Scale::StringList docs

c =i n, y, v,C()

n

y

v

C

The metadata about the additional, signed data required to execute an extrinsic.

where

 is a string representing the unique signed extension identifier, which may be different from the type name.

 is a type Id (Definition 170) of the signed extension, with the data to be included in the extrinsic.

 is the type Id (Definition 170) of the additional signed data, with the data to be included in the signed payload.

Image 17. Metadata Extrinsic

e =i n, y, a()

n

y

a

https://spec.polkadot.network/sect-metadata#sect-rtm-structure
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id

MetadataExtrinsic

pos size type id
0 ... Scale::String name
... ... Scale::CompactInt type
... ... Scale::CompactInt additional

Implementation Guide
This is the Implementation Guide [WIP!].

📄 FAQ

WIP

https://spec.polkadot.network/Implementation%20Guide/faq

FAQ

WIP

Appendix A: Cryptography &

Encoding
The appendix chapter contains various protocol details.

A.1. Cryptographic Algorithms

A.1.1. Hash Functions

A.1.1.1. BLAKE2

BLAKE2 is a collection of cryptographic hash functions known for their high speed. Their design closely resembles BLAKE which has been a finalist in
the SHA-3 competition.

Polkadot is using the Blake2b variant, which is optimized for 64-bit platforms. Unless otherwise specified, the Blake2b hash function with a 256-bit
output is used whenever Blake2b is invoked in this document. The detailed specification and sample implementations of all variants of Blake2 hash
functions can be found in RFC 7693 (1).

A.1.2. Randomness

A.1.3. VRF

A Verifiable Random Function (VRF) is a mathematical operation that takes some input and produces a random number using a secret key along with a
proof of authenticity that this random number was generated using the submitter’s secret key and the given input. Any challenger can verify the proof to
ensure the random number generation is valid and has not been tampered with (for example, to the benefit of the submitter).

In Polkadot, VRFs are used for the BABE block production lottery by Block-Production-Lottery and the parachain approval voting mechanism (Section
8.5.). The VRF uses a mechanism similar to algorithms introduced in the following papers:

Making NSEC5 Practical for DNSSEC (2)

DLEQ Proofs

Verifiable Random Functions (VRFs) (3)

It essentially generates a deterministic elliptic curve based on Schnorr signature as a verifiable random value. The elliptic curve group used in the VRF
function is the Ristretto group specified in:

ristretto.group/

Definition 181. VRF Proof

Definition 182. DLEQ Prove

INFO

TBH

The VRF proof proves the correctness of an associated VRF output. The VRF proof, , is a data structure of the following format:

where is the challenge and is the 32-byte Schnorr poof. Both are expressed as Curve25519 scalars as defined in Definition Definition 182.

P

P = C,S()

S = b , … b (0 31)

C S

https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://eprint.iacr.org/2017/099.pdf
https://blog.cloudflare.com/privacy-pass-the-math/#dleqproofs
https://tools.ietf.org/id/draft-goldbe-vrf-01
https://ristretto.group/
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove

Definition 183. DLEQ Verify

The function creates a proof for a given input, , based on the provided transcript, .

First:

Then the witness scalar is calculated, , where is the 32-byte secret seed used for nonce generation in the context of sr25519.

where is the length of the witness, encoded as a 32-bit little-endian integer. is a 32-byte array containing the secret witness scalar.

where

 is the compressed Ristretto point of the scalar input.

 is the compressed Ristretto point of the public key.

 is the compressed Ristretto point of the wittness:

For the 64-byte challenge:

And the Schnorr proof:

where is the secret key.

dleq_prove t, i() i T

t =1 append t, ’proto-name’, ’DLEQProof’()

t =2 append t , ’vrf:h’, i(1)

s w w

t 3

t 4

t 5

t 6

t 7

t 8

(ϕ, s)w

= meta-AD(t , ’proving00’, more=False)2

= meta-AD(t ,w , more=True)3 l

= KEY(t ,w, more=False)4

= meta-AD(t , ’rng’, more=False)5

= KEY(t , r, more=False)6

= meta-AD(t , e_(64), more=False)7

= PRF(t , more=False)8

w l r

l 1

l 2

l 3

l 4

= append(t , ’vrf:R=g ’, s)2
r

w

= append(l , ’vrf:h ’, s)1
r

i

= append(l , ’vrf:pk’, s)2 p

= append(l , ’vrf:h ’, vrf)3
sk

o

s i

s p

s w

l =5 meta-AD l , ’prove’, more=False(4)

l =6 meta-AD l , e , more=True(5 64)

C = PRF l , more=False(6)

S = s −w C ⋅ p()

p

The function verifiers the VRF input, against the output, , with the associated proof (Definition 181) and public key,
.

where

 is calculated as:

dleq_verify i, o,P , p (k) i o p k

t 1

t 2

t 3

t 4

t 5

t 6

= append(t, ’proto-name’, ’DLEQProof’)

= append(t , ’vrf:h’, s)1 i

= append(t , ’vrf:R=g ’,R)2
r

= append(t , ’vrf:h ’,H)3
r

= append(t , ’vrf:pk’, p)4 k

= append(t , ’vrf:h ’, o)5
sk

R

https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-proof

A.1.3.1. Transcript

A VRF transcript serves as a domain-specific separator of cryptographic protocols and is represented as a mathematical object, as defined by Merlin,
which defines how that object is generated and encoded. The usage of the transcript is implementation specific, such as for certain mechanisms in the
Availability & Validity chapter (Chapter 8), and is therefore described in more detail in those protocols. The input value used to initiate the transcript is
referred to as a context (Definition 184).

Definition 184. VRF Context

Definition 185. VRF Transcript

Definition 186. STROBE Operations

where is the Ristretto basepoint.

 is calculated as:

The challenge is valid if equals :

R = C ∈ P × p +k S ∈ P + B

B

H

H = C ∈ P × o + S ∈ P × i

C ∈ P y

t =7 meta-AD t , ’prove’, more=False(6)

t =8 meta-AD t , e , more=True(7 64)

y = PRF t , more=False(8)

The VRF context is a constant byte array used to initiate the VRF transcript. The VRF context is constant for all users of the VRF for the specific
context for which the VRF function is used. Context prevents VRF values generated by the same nodes for other purposes to be reused for
purposes not meant to. For example, the VRF context for the BABE Production lottery defined in Section 5.2. is set to be "substrate-babe-vrf".

A transcript, or VRF transcript, is a STROBE object, , as defined in the STROBE documentation, respectively section "5. State of a STROBE
object".

where

The duplex state, , is a 200-byte array created by the keccak-f1600 sponge function on the initial STROBE state. Specifically, R is of value
166 , and X.Y.Z is of value 1.0.2 .

 has the initial value of 0 .

 has the initial value of 0 .

 has the initial value of 0 .

Then, the meta-AD operation (Definition 186) (where more=False) is used to add the protocol label Merlin v1.0 to followed by appending
(Section A.1.3.1.1.) label dom-step and its corresponding context, , resulting in the final transcript, .

 serves as an arbitrary identifier/separator and its value is defined by the protocol specification individually. This transcript is treated just like a
STROBE object, wherein any operations (Definition 186) on it modify the values such as and .

Formally, when creating a transcript, we refer to it as .

obj

obj = st, pos, pos , I (begin 0)

st

pos

pos begin

I 0

obj
ctx T

t = meta-AD obj, ’Merlin v1.0’, False()

T = append t, ’dom-step’, ctx()

ctx
pos pos begin

Transcript ctx()

https://spec.polkadot.network/chapter-anv
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-context
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://strobe.sourceforge.io/specs/#object
https://strobe.sourceforge.io/specs/#object
https://keccak.team/keccak_specs_summary
https://strobe.sourceforge.io/specs/#object.initial
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf-appending-messages
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations

A.1.3.1.1. Messages

Appending messages, or "data," to the transcript (Definition 185) first requires meta-AD operations for a given label of the messages, including the size
of the message, followed by an AD operation on the message itself. The size of the message is a 4-byte, little-endian encoded integer.

where is the transcript (Definition 185), is the given label and the message, respectively representing its size. is the resulting transcript

with the appended data. STROBE operations are described in Definition 186.

Formally, when appending a message, we refer to it as .

A.1.4. Cryptographic Keys

Various types of keys are used in Polkadot to prove the identity of the actors involved in the Polkadot Protocols. To improve the security of the users,
each key type has its own unique function and must be treated differently, as described in this Section.

Definition 187. Account Key

Definition 188. Stash Key

Definition 189. Controller Key

STROBE operations are described in the STROBE specification, respectively section "6. Strobe operations". Operations are indicated by their
corresponding bitfield, as described in section "6.2. Operations and flags" and implemented as described in section "7. Implementation of
operations"

T =0 meta-AD T , l, False()

T =1 meta-AD T ,m , True(0 l)

T =2 AD T ,m, False(1)

T l m m l T 2

append T , l,m()

Account key is a key pair of type of either of the schemes in the following table:

Table 2. List of the public key scheme that can be used for an account key

Key
Scheme

Description

sr25519 Schnorr signature on Ristretto compressed ed25519 points as implemented in TODO

ed25519
The ed25519 signature complies with (4) except for the verification process which adhere to Ed25519 Zebra variant specified in
(5). In short, the signature point is not assumed to be in the prime-ordered subgroup group. As such, the verifier must explicitly
clear the cofactor during the course of verifying the signature equation.

secp256k1 Only for outgoing transfer transactions.

An account key can be used to sign transactions among other accounts and balance-related functions. Keys defined in Definition 187 and
Definition 188 are created and managed by the user independent of the Polkadot implementation. The user notifies the network about the used
keys by submitting a transaction.

sk , pk(a a)

The Stash key is a type of account that is intended to hold a large amount of funds. As a result, one may actively participate with a stash key,
keeping the stash key offline in a secure location. It can also be used to designate a Proxy account to vote in governance proposals.

CONTROLLER ACCOUNTS ARE DEPRECATED

Controller accounts and controller keys are no longer supported. For more information about the deprecation, see the Polkadot wiki or a more
detailed discussion in the Polkadot forum. If you want to know how to set up Stash and Staking Proxy Keys, you can also check thePolkadot wiki
The following definition will be removed soon.

https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations
https://strobe.sourceforge.io/specs/
https://strobe.sourceforge.io/specs/#ops
https://strobe.sourceforge.io/specs/#ops.flags
https://strobe.sourceforge.io/specs/#ops.impl
https://strobe.sourceforge.io/specs/#ops.impl
https://spec.polkadot.network/id-cryptography-encoding#defn-account-key
https://spec.polkadot.network/id-cryptography-encoding#defn-stash-key
https://wiki.polkadot.network/docs/learn-controller
https://forum.polkadot.network/t/staking-controller-deprecation-plan-staking-ui-leads-comms/2748
https://wiki.polkadot.network/docs/maintain-guides-how-to-nominate-kusama#setting-up-stash-and-staking-proxy-keys

Definition 190. Session Keys

A.1.4.1. Holding and staking funds

A.1.4.2. Designating a proxy for voting

A.2. Auxiliary Encodings

Definition 191. Unix Time

A.2.1. Binary Enconding

Definition 192. Sequence of Bytes

The Controller key is a type of account key that acts on behalf of the Stash account. It signs transactions that make decisions regarding the
nomination and the validation of the other keys. It is a key that will be in direct control of a user and should mostly be kept offline, used to submit
manual extrinsics. It sets preferences like payout account and commission. If used for a validator, it certifies the session keys. It only needs the
required funds to pay transaction fees [TODO: key needing fund needs to be defined].

Session keys are short-lived keys that are used to authenticate validator operations. Session keys are generated by the Polkadot Host and should
be changed regularly due to security reasons. Nonetheless, no validity period is enforced by the Polkadot protocol on session keys. Various types
of keys used by the Polkadot Host are presented in Table 3:

Table 3. List of key schemes which are used for session keys depending on the protocol

Protocol Key scheme

GRANDPA ED25519

BABE SR25519

I’m Online SR25519

Parachain SR25519

BEEFY secp256k1

Session keys must be accessible by certain Polkadot Host APIs defined in Appendix B. Session keys are not meant to control the majority of the
users’ funds and should only be used for their intended purpose.

INFO

TBH

INFO

TBH

By Unix time, we refer to the unsigned, little-endian encoded 64-bit integer which stores the number of milliseconds that have elapsed since the
Unix epoch, that is the time 00:00:00 UTC on 1 January 1970, minus leap seconds. Leap seconds are ignored, and every day is treated as if it
contained exactly 86’400 seconds.

By a sequences of bytes or a byte array, , of length , we refer tob n

https://spec.polkadot.network/id-cryptography-encoding#tabl-session-keys
https://spec.polkadot.network/chap-host-api

Definition 193. Bitwise Representation

Definition 194. Little Endian

Definition 195. UINT32

A.2.2. SCALE Codec

The Polkadot Host uses Simple Concatenated Aggregate Little-Endian” (SCALE) codec to encode byte arrays as well as other data structures. SCALE
provides a canonical encoding to produce consistent hash values across their implementation, including the Merkle hash proof for the State Storage.

Definition 196. Decoding

We define to be the set of all byte arrays of length . Furthermore, we define:

We represent the concatenation of byte arrays and by:

b = b , b , … , b such that 0 ≤(0 1 n−1) b ≤i 255

B n n

B = B

i=0

⋃
∞

i

a = a , … , a (0 n) b = b , … , b (0 m)

a∣b := (a , ..., a , b , ..., b)0 n 0 m

For a given byte the bitwise representation in bits is defined as:

where

0 ≤ b ≤ 255 b ∈i 0, 1{ }

b = b … b 7 0

b = 2 b +7
7 2 b +6

6 … + 2 b

0
0

By the little-endian representation of a non-negative integer, , represented as

in base 256, we refer to a byte array such that

Accordingly, we define the function :

I

I = B …B (n 0)256

B = b , b , … , b (0 1 n)

b =i B i

Enc LE

Enc :LE Z →+ B; B …B ∣ →(n 0)256 B B , … ,B (0, 1 n)

By UINT32, we refer to a non-negative integer stored in a byte array of length using little-endian encoding format.4

 refers to the decoding of a blob of data. Since the SCALE codec is not self-describing, it’s up to the decoder to validate whether the
blob of data can be deserialized into the given type or data structure.

It’s accepted behavior for the decoder to partially decode the blob of data. This means any additional data that does not fit into a data structure can
be ignored.

Dec dSC()

CAUTION

Definition 197. Tuple

In the case of a tuple (or a structure), the knowledge of the shape of data is not encoded even though it is necessary for decoding. The decoder needs
to derive that information from the context where the encoding/decoding is happening.

Definition 198. Varying Data Type

Definition 199. Encoding of Varying Data Type

Definition 200. Option Type

Definition 201. Result Type

Considering that the decoded data is never larger than the encoded message, this information can serve as a way to validate values that can
vary in size, such as sequences (Definition 202). The decoder should strictly use the size of the encoded data as an upper bound when
decoding in order to prevent denial of service attacks.

The SCALE codec for Tuple, , such that:

Where ’s are values of different types, is defined as:

T

T = A , …A (1 n)

A i

Enc T =SC() Enc A ||Enc A || … ||Enc A SC(1) SC(2) SC(n)

We define a varying data type to be an ordered set of data types.

A value of varying data type is a pair where for some and is its value of type , which can be
empty. We define , unless it is explicitly defined as another value in the definition of a particular varying data type.

In particular, we define two specific varying data which are frequently used in various parts of the Polkadot protocol: Option (Definition 200) and
Result (Definition 201).

T = T , … ,T { 1 n}

A A ,A (Type Value) A =Type T i T ∈i T A Value T i

idx T =(i) i − 1

The SCALE codec for value of varying data type , formally referred to as is defined as

follows:

Where is an 8-bit integer determining the type of . In particular, for the optional type defined in Definition 198, we have:

The SCALE codec does not encode the correspondence between the value and the data type it represents; the decoder needs prior knowledge of
such correspondence to decode the data.

A = A ,A (Type Value) T = T , …T { i n} Enc ASC()

Enc A =SC() Enc idx A ||Enc A SC((Type) SC(Value))

idx A

Enc None,ϕ =SC() 0 B 1

The Option type is a varying data type of which indicates if data of type is available (referred to as some state) or not (referred to

as empty, none or null state). The presence of type none, indicated by , implies that the data corresponding to type is not
available and contains no additional data. Where as the presence of type indicated by implies that the data is available.

None,T { 2} T 2

idx T =(None) 0 T 2

T 2 idx T =(2) 1

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 202. Sequence

Definition 203. Dictionary

Definition 204. Boolean

Definition 205. String

Definition 206. Fixed Length

Definition 207. Empty

The Result type is a varying data type of which is used to indicate if a certain operation or function was executed successfully (referred
to as "ok" state) or not (referred to as "error" state). implies success, implies failure. Both types can either contain additional data or are
defined as empty types otherwise.

T ,T { 1 2}
T 1 T 2

The SCALE codec for sequence such that:

where ’s are values of the same type (and the decoder is unable to infer value of from the context) is defined as:

where is defined in Definition 208.

In some cases, the length indicator is omitted if the length of the sequence is fixed and known by the decoder upfront. Such cases

are explicitly stated by the definition of the corresponding type.

S

S = A , …A 1 n

A i n

Enc S =SC() Enc S ||Enc A || … ||Enc A SC
Len(∣ ∣) SC(2) SC(n)

Enc SC
Len

Enc SSC
Len(∣ ∣)

SCALE codec for dictionary or hashtable D with key-value pairs s such that:

is defined as the SCALE codec of as a sequence of key-value pairs (as tuples):

where is encoded the same way as but argument refers to the number of key-value pairs rather than the length.

k , v (i i)

D = k , v , … k , v {(1 1) (n n)}

D

Enc D =SC() Enc D ||Enc k , v || … ||Enc k , v SC
Size(∣ ∣) SC(1 1) SC(n n)

Enc SC
Size Enc SC

Len Size

The SCALE codec for a boolean value defined as a byte as follows:b

Enc :SC False, True →{ } B 1

b → {
0
1

b = False
b = True

The SCALE codec for a string value is an encoded sequence (Definition 202) consisting of UTF-8 encoded bytes.

The SCALE codec, , for other types such as fixed length integers not defined here otherwise, is equal to little-endian encoding of those
values defined in Definition 194.

Enc SC

https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/id-cryptography-encoding#defn-little-endian

A.2.2.1. Length and Compact Encoding

SCALE Length encoding is used to encode integer numbers of varying sizes prominently in an encoding length of arrays:

Definition 208. Length Encoding

A.2.3. Hex Encoding

Practically, it is more convenient and efficient to store and process data which is stored in a byte array. On the other hand, the trie keys are broken into
4-bits nibbles. Accordingly, we need a method to encode sequences of 4-bits nibbles into byte arrays canonically. To this aim, we define hex encoding
function as follows:

Definition 209. Hex Encoding

A.3. Chain Specification

Chain Specification (chainspec) is a collection of information that describes the blockchain network. It includes information required for a host to connect
and sync with the Polakdot network, for example, the initial nodes to communicate with, protocol identifier, initial state that the hosts agree, etc. There
are a set of core fields required by the Host and a set of extensions that are used by optionally implemented features of the Host. The fields of chain

The SCALE codec, , for an empty type, is defined as a byte array of zero length and depicted as .Enc SC ϕ

SCALE Length encoding, , also known as a compact encoding, of a non-negative number is defined as follows:

in where the least significant bits of the first byte of byte array b are defined as follows:

and the rest of the bits of store the value of in little-endian format in base-2 as follows:

such that:

Note that denotes the length of the original integer being encoded and does not include the extra byte describing the length. The encoding can
be used for integers up to .

Enc SC
Len n

Enc :SC
Len N → B

n → b =

⎩
⎨

⎧ l 1

i i 1 2

j j j j 1 2 3 4

k k … k 1 2 m+1

0 ≤ n < 26

2 ≤ n < 26 14

2 ≤ n < 214 30

2 ≤ n30

l l =1
1

1
0 00

i i =1
1

1
0 01

j j =1
1

1
0 10

k k =1
1

1
0 11

b n

n =

⎩
⎨

⎧ l … l l 1
7

1
3

1
2

i … i i ..i 2
7

2
0

1
7

1
2

j … j j … j … j 4
7

4
0

3
7

1
7

1
2

k + k 2 + k 2 + … + k 22 3
8

4
2×8

m+1
m−1 8()

n < 26

2 ≤ n < 26 14

2 ≤ n < 214 30

2 ≤ n30

k … k k =1
7

1
3

1
2 m − 4

m

2 −(63+4)8 1 = 2 −536 1

Enc HE PK()()

Suppose that is a sequence of nibbles, then:PK = k , … k (1 n)

Enc PK =HE()

⎩
⎨
⎧ Nibbles 4

PK = k , … k (1 n)

→

→

B

 {
16k + k , … , 16k + k (1 2 2i−1 2i)

k , 16k + k , … , 16k + k (1 2 3 2i 2i+1)
n = 2i

n = 2i + 1

specification are categorized in three parts:

1. ChainSpec

2. ChainSpec Extensions

3. Genesis State which is the only mandatory part of the chainspec.

A.3.1. Chain Spec

Chain specification contains information used by the Host to communicate with network participants and optionally send data to telemetry endpoints.

A.3.2. Chain Spec Extensions

ChainSpec Extensions are additional parameters customizable from the chainspec and correspond to optional features implemented in the Host.

Definition 210. Bad Blocks Header

The client specification contains the fields below. The values for the Polkadot chain are specified:

name: The human-readable name of the chain.

id: The id of the chain.

chainType: Possible values are Live , Development , Local .

bootNodes: A list of MultiAddress that belong to boot nodes of the chain. The list of boot nodes for Polkadot can be found here

telemetryEndpoints: Optional list of "(multiaddress, verbosity)" pairs of telemetry endpoints. The verbosity goes from 0 to 9 . With 0 being the
mode with the lowest verbosity.

forkId: Optional fork id. Should most likely be left empty. Can be used to signal a fork on the network level when two chains have the same
genesis hash.

properties: Optional additional properties of the chain as subfields including token symbol, token decimals, and address formats.

"name": "Polkadot"

"id": "polkadot"

"chainType": "Live"

"forkId": {}

 "properties": {

 "ss58Format": 0,

 "tokenDecimals": 10,

 "tokenSymbol": "DOT"

 }

BadBlocks describes a list of block header hashes that are known a priori to be bad (not belonging to the canonical chain) by the host, so that the
host can explicitly avoid importing them. These block headers are always considered invalid and filtered out before importing the block:

where is a known invalid block header hash.

badBlocks = b , … b (0 n)

b i

https://github.com/libp2p/specs/blob/master/addressing/README.md#multiaddr-in-libp2p
https://raw.githubusercontent.com/paritytech/polkadot/master/node/service/chain-specs/polkadot.json

Definition 211. Fork Blocks

A.3.3. Genesis State

The genesis state is a set of key-value pairs representing the initial state of the Polkadot state storage. It can be retrieved from the Polkadot repository.
While each of those key-value pairs offers important identifiable information to the Runtime, to the Polkadot Host they are a transparent set of arbitrary
chain- and network-dependent keys and values. The only exception to this are the :code (Section 2.6.2.) and :heappages (Section 2.6.3.1.) keys,
which are used by the Polkadot Host to initialize the WASM environment and its Runtime. The other keys and values are unspecified and solely depend
on the chain and respectively its corresponding Runtime. On initialization, the data should be inserted into the state storage with the Host API (Section
B.2.1.).

As such, Polkadot does not define a formal genesis block. Nonetheless, for compatibility reasons in several algorithms, the Polkadot Host defines the
genesis header (Definition 212). By the abuse of terminology, "genesis block" refers to the hypothetical parent of block number 1 which holds the
genesis header as its header.

Definition 212. Genesis Header

Definition 213. Code Substitutes

ForkBlocks describes a list of expected block header hashes at certain block heights. They are used to set trusted checkpoints, i.e., the host will
refuse to import a block with a different hash at the given height. Forkblocks are useful mechanisms to guide the Host to the right fork in instances
where the chain is bricked (possibly due to issues in runtime upgrades).

where is an apriori known valid block header hash at block height . The host is expected to accept no other block except at height .

forkBlocks = < b ,H >, … < b ,H >(0 0 n n)

b i H i b i H i

INFO

lightSyncState describes a check-pointing format for light clients. Its specification is currently Work-In-Progress.

The Polkadot genesis header is a data structure conforming to block header format (Definition 10). It contains the following values:

Table 4. Table of Genesis Header Values

Block header field Genesis Header Value

parent_hash

number

state_root Merkle hash of the state storage trie (Definition 29) after inserting the genesis state in it.

extrinsics_root Merkle hash of an empty trie:

digest

0 B 32

0

Blake2b 0 (B 1)

0

Code Substitutes is a list of pairs of the block numbers and wasm_code . The given WASM code will be used to substitute the on-chain WASM
code starting with the given block number until the spec_version on-chain changes. The substitute code should be as close as possible to the
on-chain wasm code. A substitute should be used to fix a bug that can not be fixed with a runtime upgrade if, for example, the runtime is constantly
panicking. Introducing new runtime apis isn't supported, because the node will read the runtime version from the on-chain wasm code. Use this
functionality only when there is no other way around and to only patch the problematic bug, the rest should be done with an on-chain runtime
upgrade.

https://github.com/paritytech/polkadot/tree/master/node/service/chain-specs
https://spec.polkadot.network/chap-state#sect-loading-runtime-code
https://spec.polkadot.network/chap-state#sect-memory-management
https://spec.polkadot.network/chap-host-api#sect-storage-set
https://spec.polkadot.network/chap-host-api#sect-storage-set
https://spec.polkadot.network/id-cryptography-encoding#defn-genesis-header
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-merkle-value
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

A.4. Erasure Encoding

A.4.1. Erasure Encoding

Bibliography

1. Saarinen MJ, Aumasson J-P. The BLAKE2 cryptographic hash and message authentication code (MAC) [Internet]. https://tools.ietf.org/html/rfc7693:
-; 2015. Report No.: 7693. Available from: https://tools.ietf.org/html/rfc7693

2. Papadopoulos D, Wessels D, Huque S, Naor M, Včelák J, Reyzin L, et al. Making NSEC5 Practical for DNSSEC [Internet]. Cryptology ePrint
Archive, Paper 2017/099; 2017. Available from: https://eprint.iacr.org/2017/099

3. Goldberg S, Papadopoulos D, Vcelak J. Internet Draft - Verifiable Random Functions (VRFs) [Internet]. draft-goldbe-vrf-01. 2017. Available from:
https://tools.ietf.org/id/draft-goldbe-vrf-01.html

4. Josefsson S, Liusvaara I. Edwards-curve digital signature algorithm (EdDSA). In: Internet Research Task Force, Crypto Forum Research Group,
RFC. 2017.

5. de Valence H. Explicitly Defining and Modifying Ed25519 Validation Rules [Internet]. 2020. Available from:
https://github.com/zcash/zips/blob/master/zip-0215.rst

INFO

Erasure Encoding has not been documented yet.

https://tools.ietf.org/html/rfc7693
https://tools.ietf.org/html/rfc7693
https://eprint.iacr.org/2017/099
https://tools.ietf.org/id/draft-goldbe-vrf-01.html
https://github.com/zcash/zips/blob/master/zip-0215.rst

Appendix B: Host API

Description of the expected environment available for import by the Polkadot Runtime

B.1. Preliminaries

The Polkadot Host API is a set of functions that the Polkadot Host exposes to Runtime to access external functions needed for various reasons, such as
the Storage of the content, access and manipulation, memory allocation, and also efficiency. The encoding of each data type is specified or referenced
in this section. If the encoding is not mentioned, then the default Wasm encoding is used, such as little-endian byte ordering for integers.

Definition 214. Exposed Host API

Definition 215. Runtime Pointer

Definition 216. Runtime Pointer Size

Definition 217. Lexicographic ordering

B.2. Storage

Interface for accessing the storage from within the runtime.

Definition 218. State Version

By we refer to the API exposed by the Polkadot Host, which interacts, manipulates, and responds based on the state storage whose state is
set at the end of the execution of block .

RE B

B

The Runtime pointer type is an unsigned 32-bit integer representing a pointer to data in memory. This pointer is the primary way to exchange
data of fixed/known size between the Runtime and Polkadot Host.

The Runtime pointer-size type is an unsigned 64-bit integer representing two consecutive integers. The least significant is Runtime pointer
(Definition 215). The most significant provides the size of the data in bytes. This representation is the primary way to exchange data of
arbitrary/dynamic sizes between the Runtime and the Polkadot Host.

Lexicographic ordering refers to the ascending ordering of bytes or byte arrays, such as:

The functions are specified in each subsequent subsection for each category of those functions.

0, 0, 2 <[] 0, 1, 1 <[] 1 <[] 1, 1, 0 <[] 2 <[] …[]

DANGER

As of now, the storage API should silently ignore any keys that start with the :child_storage:default: prefix. This applies to reading and
writing. If the function expects a return value, then None (Definition 200) should be returned. See substrate issue #12461.

The state version, , dictates how a Merkle root should be constructed. The data structure is a varying type of the following format:v

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://github.com/paritytech/substrate/issues/12461
https://github.com/paritytech/substrate/issues/12461
https://github.com/paritytech/substrate/issues/12461

B.2.1. ext_storage_set

Sets the value under a given key into storage.

B.2.1.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

value : a pointer-size (Definition 216) containing the value.

B.2.2. ext_storage_get

Retrieves the value associated with the given key from storage.

B.2.2.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

result : a pointer-size (Definition 216) returning the SCALE encoded Option value (Definition 200) containing the value.

B.2.3. ext_storage_read

Gets the given key from storage, placing the value into a buffer and returning the number of bytes that the entry in storage has beyond the offset.

B.2.3.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

value_out : a pointer-size (Definition 216) containing the buffer to which the value will be written to. This function will never write more then the
length of the buffer, even if the value’s length is bigger.

offset : an u32 integer (typed as i32 due to wasm types) containing the offset beyond the value should be read from.

result : a pointer-size (Definition 216) pointing to a SCALE encoded Option value (Definition 200) containing an unsigned 32-bit integer

representing the number of bytes left at supplied offset . Returns None if the entry does not exist.

B.2.4. ext_storage_clear

Clears the storage of the given key and its value. Non-existent entries are silently ignored.

where indicates that the values of the keys should be inserted into the trie directly, and makes use of "node hashes" when calculating the
Merkle proof (Definition 28).

v = {
0
1

full values
node hashes

0 1

(func $ext_storage_set_version_1

 (param $key i64) (param $value i64))

(func $ext_storage_get_version_1

 (param $key i64) (result i64))

(func $ext_storage_read_version_1

 (param $key i64) (param $value_out i64) (param $offset i32) (result i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-state#defn-hashed-subvalue

B.2.4.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

B.2.5. ext_storage_exists

Checks whether the given key exists in storage.

B.2.5.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

return : an i32 integer value equal to 1 if the key exists or a value equal to 0 if otherwise.

B.2.6. ext_storage_clear_prefix

Clear the storage of each key/value pair where the key starts with the given prefix.

B.2.6.1. Version 1 - Prototype

Arguments

prefix : a pointer-size (Definition 216) containing the prefix.

B.2.6.2. Version 2 - Prototype

Arguments

prefix : a pointer-size (Definition 216) containing the prefix.

limit : a pointer-size (Definition 216) to an Option type (Definition 200) containing an unsigned 32-bit integer indicating the limit on how many
keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count toward the limit.

return : a pointer-size (Definition 216) to the following variant, :

where 0 indicates that all keys of the child storage have been removed, followed by the number of removed keys, . The variant 1 indicates that

there are remaining keys, followed by the number of removed keys.

(func $ext_storage_clear_version_1

 (param $key_data i64))

(func $ext_storage_exists_version_1

 (param $key_data i64) (return i32))

(func $ext_storage_clear_prefix_version_1

 (param $prefix i64))

(func $ext_storage_clear_prefix_version_2

 (param $prefix i64) (param $limit i64)

 (return i64))

k

k = {
0
1

→ c

→ c

c

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

B.2.7. ext_storage_append

Append the SCALE encoded value to a SCALE encoded sequence (Definition 202) at the given key. This function assumes that the existing storage
item is either empty or a SCALE-encoded sequence and that the value to append is also SCALE encoded and of the same type as the items in the
existing sequence.

To improve performance, this function is allowed to skip decoding the entire SCALE encoded sequence and instead can just append the new item to the

end of the existing data and increment the length prefix .

B.2.7.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

value : a pointer-size (Definition 216) containing the value to be appended.

B.2.8. ext_storage_root

Compute the storage root.

B.2.8.1. Version 1 - Prototype

Arguments

return : a pointer-size (Definition 216) to a buffer containing the 256-bit Blake2 storage root.

B.2.8.2. Version 2 - Prototype

Arguments

version : the state version (Definition 218).

return : a pointer-size (Definition 216) to the buffer containing the 256-bit Blake2 storage root.

B.2.9. ext_storage_changes_root

B.2.9.1. Version 1 - Prototype

Enc SC
Len

CAUTION

If the storage item does not exist or is not SCALE encoded, the storage item will be set to the specified value, represented as a SCALE-encoded
byte array.

(func $ext_storage_append_version_1

 (param $key i64) (param $value i64))

(func $ext_storage_root_version_1

 (return i64))

(func $ext_storage_root_version_2

 (param $version i32) (return i64))

INFO

This function is not longer used and only exists for compatibility reasons.

(func $ext_storage_changes_root_version_1

 (param $parent_hash i64) (return i64))

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments

parent_hash : a pointer-size (Definition 216) to the SCALE encoded block hash.

return : a pointer-size (Definition 216) to an Option type (Definition 200) that’s always None.

B.2.10. ext_storage_next_key

Get the next key in storage after the given one in lexicographic order (Definition 217). The key provided to this function may or may not exist in storage.

B.2.10.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) to the key.

return : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the next key in lexicographic order.

B.2.11. ext_storage_start_transaction

Start a new nested transaction. This allows to either commit or roll back all changes that are made after this call. For every transaction, there must be a
matching call to either ext_storage_rollback_transaction (Section B.2.12.) or ext_storage_commit_transaction (Section B.2.13.). This is
also effective for all values manipulated using the child storage API (Section B.3.). It’s legal to call this function multiple times in a row.

B.2.11.1. Version 1 - Prototype

Arguments

None.

B.2.12. ext_storage_rollback_transaction

Rollback the last transaction started by ext_storage_start_transaction (Section B.2.11.). Any changes made during that transaction are
discarded. It’s legal to call this function multiple times in a row.

B.2.12.1. Version 1 - Prototype

Arguments

None.

(func $ext_storage_next_key_version_1

 (param $key i64) (return i64))

CAUTION

This is a low-level API that is potentially dangerous as it can easily result in unbalanced transactions. Runtimes should use high-level storage
abstractions.

(func $ext_storage_start_transaction_version_1)

CAUTION

Panics if ext_storage_start_transaction (Section B.2.11.) was not called.

(func $ext_storage_rollback_transaction_version_1)

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-lexicographic-ordering
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#sect-ext-storage-rollback-transaction
https://spec.polkadot.network/chap-host-api#sect-ext-storage-commit-transaction
https://spec.polkadot.network/chap-host-api#sect-child-storage-api
https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction
https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction

B.2.13. ext_storage_commit_transaction

Commit the last transaction started by ext_storage_start_transaction (Section B.2.11.). Any changes made during that transaction are
committed to the main state. It’s legal to call this function multiple times in a row.

B.2.13.1. Version 1 - Prototype

Arguments

None.

B.3. Child Storage

Interface for accessing the child storage from within the runtime.

Definition 219. Child Storage

B.3.1. ext_default_child_storage_set

Sets the value under a given key into the child storage.

B.3.1.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

key : a pointer-size (Definition 216) to the key.

value : a pointer-size (Definition 216) to the value.

B.3.2. ext_default_child_storage_get

Retrieves the value associated with the given key from the child storage.

B.3.2.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

key : a pointer-size (Definition 216) to the key.

result : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the value.

CAUTION

Panics if ext_storage_start_transaction (Section B.2.11.) was not called.

(func $ext_storage_commit_transaction_version_1)

Child storage key is an unprefixed location of the child trie in the main trie.

(func $ext_default_child_storage_set_version_1

 (param $child_storage_key i64) (param $key i64) (param $value i64))

(func $ext_default_child_storage_get_version_1

 (param $child_storage_key i64) (param $key i64) (result i64))

https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction

B.3.3. ext_default_child_storage_read

Gets the given key from storage, placing the value into a buffer and returning the number of bytes that the entry in storage has beyond the offset.

B.3.3.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

key : a pointer-size (Definition 216) to the key.

value_out : a pointer-size (Definition 216) to the buffer to which the value will be written to. This function will never write more then the length of
the buffer, even if the value’s length is bigger.

offset : an u32 integer (typed as i32 due to wasm types) containing the offset beyond the value should be read from.

result : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the number of bytes written into the
value_out buffer. Returns if the entry does not exists.

B.3.4. ext_default_child_storage_clear

Clears the storage of the given key and its value from the child storage. Non-existent entries are silently ignored.

B.3.4.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

key : a pointer-size (Definition 216) to the key.

B.3.5. ext_default_child_storage_storage_kill

Clears an entire child storage.

B.3.5.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

B.3.5.2. Version 2 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

(func $ext_default_child_storage_read_version_1

 (param $child_storage_key i64) (param $key i64) (param $value_out i64)

 (param $offset i32) (result i64))

(func $ext_default_child_storage_clear_version_1

 (param $child_storage_key i64) (param $key i64))

(func $ext_default_child_storage_storage_kill_version_1

 (param $child_storage_key i64))

(func $ext_default_child_storage_storage_kill_version_2

 (param $child_storage_key i64) (param $limit i64)

 (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type

limit : a pointer-size (Definition 216) to an Option type (Definition 200) containing an unsigned 32-bit integer indicating the limit on how many
keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count toward the limit.

return : a value equal to 1 if all the keys of the child storage have been deleted or a value equal to 0 if there are remaining keys.

B.3.5.3. Version 3 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

limit : a pointer-size (Definition 216) to an Option type (Definition 200) containing an unsigned 32-bit integer indicating the limit on how many
keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count toward the limit.

return : a pointer-size (Definition 216) to the following variant, :

where 0 indicates that all keys of the child storage have been removed, followed by the number of removed keys, . The variant 1 indicates that

there are remaining keys, followed by the number of removed keys.

B.3.6. ext_default_child_storage_exists

Checks whether the given key exists in the child storage.

B.3.6.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

key : a pointer-size (Definition 216) to the key.

return : an i32 integer value equal to 1 if the key exists or a value equal to 0 if otherwise.

B.3.7. ext_default_child_storage_clear_prefix

Clears the child storage of each key/value pair where the key starts with the given prefix.

B.3.7.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

prefix : a pointer-size (Definition 216) to the prefix.

B.3.7.2. Version 2 - Prototype

(func $ext_default_child_storage_storage_kill_version_3

 (param $child_storage_key i64) (param $limit i64)

 (return i64))

k

k = {
0
1

→ c

→ c

c

(func $ext_default_child_storage_exists_version_1

 (param $child_storage_key i64) (param $key i64) (return i32))

(func $ext_default_child_storage_clear_prefix_version_1

 (param $child_storage_key i64) (param $prefix i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

prefix : a pointer-size (Definition 216) to the prefix.

limit : a pointer-size (Definition 216) to an Option type (Definition 200) containing an unsigned 32-bit integer indicating the limit on how many

keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count towards the limit.

return : a pointer-size (Definition 216) to the following variant, :

where 0 indicates that all keys of the child storage have been removed, followed by the number of removed keys, . The variant 1 indicates that
there are remaining keys, followed by the number of removed keys.

B.3.8. ext_default_child_storage_root

Commits all existing operations and computes the resulting child storage root.

B.3.8.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

return : a pointer-size (Definition 216) to the SCALE encoded storage root.

B.3.8.2. Version 2 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

version : the state version (Definition 218).

return : a pointer (Definition 215) to the buffer containing the 256-bit Blake2 storage root.

B.3.9. ext_default_child_storage_next_key

Gets the next key in storage after the given one in lexicographic order (Definition 217). The key provided to this function may or may not exist in
storage.

B.3.9.1. Version 1 - Prototype

Arguments

(func $ext_default_child_storage_clear_prefix_version_2

 (param $child_storage_key i64) (param $prefix i64)

 (param $limit i64) (return i64))

k

k = {
0
1

→ c

→ c

c

(func $ext_default_child_storage_root_version_1

 (param $child_storage_key i64) (return i64))

(func $ext_default_child_storage_root_version_2

 (param $child_storage_key i64) (param $version i32)

 (return i64))

(func $ext_default_child_storage_next_key_version_1

 (param $child_storage_key i64) (param $key i64) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-lexicographic-ordering

child_storage_key : a pointer-size (Definition 216) to the child storage key (Definition 219).

key : a pointer-size (Definition 216) to the key.

return : a pointer-size (Definition 216) to the SCALE encoded as defined in Definition 200 containing the next key in lexicographic order. Returns
if the entry cannot be found.

B.4. Crypto

Interfaces for working with crypto related types from within the runtime.

Definition 220. Key Type Identifier

Definition 221. ECDSA Verify Error

B.4.1. ext_crypto_ed25519_public_keys

Returns all ed25519 public keys for the given key identifier from the keystore.

B.4.1.1. Version 1 - Prototype

Cryptographic keys are stored in separate key stores based on their intended use case. The separate key stores are identified by a 4-byte ASCII
key type identifier. The following known types are available:

Table 5. Table of known key type identifiers

Id Description

acco Key type for the controlling accounts

babe Key type for the Babe module

gran Key type for the Grandpa module

imon Key type for the ImOnline module

audi Key type for the AuthorityDiscovery module

para Key type for the Parachain Validator Key

asgn Key type for the Parachain Assignment Key

EcdsaVerifyError is a varying data type (Definition 198) that specifies the error type when using ECDSA recovery functionality. The following
values are possible:

Table 6. Table of error types in ECDSA recovery

Id Description

0 Incorrect value of R or S

1 Incorrect value of V

2 Invalid signature

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Arguments

key_type_id : a pointer (Definition 215) to the key type identifier (Definition 220).

return : a pointer-size (Definition 216) to an SCALE encoded 256-bit public keys.

B.4.2. ext_crypto_ed25519_generate

Generates an ed25519 key for the given key type using an optional BIP-39 seed and stores it in the keystore.

B.4.2.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key type identifier (Definition 220).

seed : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the BIP-39 seed which must be valid UTF8.

return : a pointer (Definition 215) to the buffer containing the 256-bit public key.

B.4.3. ext_crypto_ed25519_sign

Signs the given message with the ed25519 key that corresponds to the given public key and key type in the keystore.

B.4.3.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key type identifier (Definition 220).

key : a pointer to the buffer containing the 256-bit public key.

msg : a pointer-size (Definition 216) to the message that is to be signed.

return : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the 64-byte signature. This function returns
if the public key cannot be found in the key store.

B.4.4. ext_crypto_ed25519_verify

Verifies an ed25519 signature.

B.4.4.1. Version 1 - Prototype

Arguments

(func $ext_crypto_ed25519_public_keys_version_1

 (param $key_type_id i32) (return i64))

CAUTION

Panics if the key cannot be generated, such as when an invalid key type or invalid seed was provided.

(func $ext_crypto_ed25519_generate_version_1

 (param $key_type_id i32) (param $seed i64) (return i32))

(func $ext_crypto_ed25519_sign_version_1

 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_ed25519_verify_version_1

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

sig : a pointer (Definition 215) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or a value equal to 0 if otherwise.

B.4.5. ext_crypto_ed25519_batch_verify

Registers an ed25519 signature for batch verification. Batch verification is enabled by calling ext_crypto_start_batch_verify (Section B.4.20.).
The result of the verification is returned by ext_crypto_finish_batch_verify (Section B.4.21.). If batch verification is not enabled, the signature is
verified immediately.

B.4.5.1. Version 1

Arguments

sig : a pointer (Definition 215) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : an i32 integer value equal to 1 if the signature is valid or batched or a value equal 0 to if otherwise.

B.4.6. ext_crypto_sr25519_public_keys

Returns all sr25519 public keys for the given key id from the keystore.

B.4.6.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key type identifier (Definition 220).

return : a pointer-size (Definition 216) to the SCALE encoded 256-bit public keys.

B.4.7. ext_crypto_sr25519_generate

Generates an sr25519 key for the given key type using an optional BIP-39 seed and stores it in the keystore.

B.4.7.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key identifier (Definition 220).

seed : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the BIP-39 seed which must be valid UTF8.

(func $ext_crypto_ed25519_batch_verify_version_1

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_sr25519_public_keys_version_1

 (param $key_type_id i32) (return i64))

CAUTION

Panics if the key cannot be generated, such as when an invalid key type or invalid seed was provided.

(func $ext_crypto_sr25519_generate_version_1

 (param $key_type_id i32) (param $seed i64) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

return : a pointer (Definition 215) to the buffer containing the 256-bit public key.

B.4.8. ext_crypto_sr25519_sign

Signs the given message with the sr25519 key that corresponds to the given public key and key type in the keystore.

B.4.8.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key identifier (Definition 220).

key : a pointer to the buffer containing the 256-bit public key.

msg : a pointer-size (Definition 216) to the message that is to be signed.

return : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the 64-byte signature. This function returns
None if the public key cannot be found in the key store.

B.4.9. ext_crypto_sr25519_verify

Verifies an sr25519 signature.

B.4.9.1. Version 1 - Prototype

Arguments

sig : a pointer (Definition 215) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or a value equal to 0 if otherwise.

B.4.9.2. Version 2 - Prototype

Arguments

sig : a pointer (Definition 215) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or a value equal to 0 if otherwise.

B.4.10. ext_crypto_sr25519_batch_verify

Registers a sr25519 signature for batch verification. Batch verification is enabled by calling ext_crypto_start_batch_verify (Section B.4.20.). The
result of the verification is returned by ext_crypto_finish_batch_verify (Section B.4.21.). If batch verification is not enabled, the signature is
verified immediately.

B.4.10.1. Version 1

(func $ext_crypto_sr25519_sign_version_1

 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_sr25519_verify_version_1

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_sr25519_verify_version_2

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify

Arguments

sig : a pointer (Definition 215) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : an i32 integer value equal to 1 if the signature is valid or batched or a value equal 0 to if otherwise.

B.4.11. ext_crypto_ecdsa_public_keys

Returns all ecdsa public keys for the given key id from the keystore.

B.4.11.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key type identifier (Definition 220).

return : a pointer-size (Definition 216) to the SCALE encoded 33-byte compressed public keys.

B.4.12. ext_crypto_ecdsa_generate

Generates an ecdsa key for the given key type using an optional BIP-39 seed and stores it in the keystore.

B.4.12.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key identifier (Definition 220).

seed : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the BIP-39 seed which must be valid UTF8.

return : a pointer (Definition 215) to the buffer containing the 33-byte compressed public key.

B.4.13. ext_crypto_ecdsa_sign

Signs the hash of the given message with the ecdsa key that corresponds to the given public key and key type in the keystore.

B.4.13.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 215) to the key identifier (Definition 220).

(func $ext_crypto_sr25519_batch_verify_version_1

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_ecdsa_public_key_version_1

 (param $key_type_id i64) (return i64))

CAUTION

Panics if the key cannot be generated, such as when an invalid key type or invalid seed was provided.

(func $ext_crypto_ecdsa_generate_version_1

 (param $key_type_id i32) (param $seed i64) (return i32))

(func $ext_crypto_ecdsa_sign_version_1

 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id

key : a pointer to the buffer containing the 33-byte compressed public key.

msg : a pointer-size (Definition 216) to the message that is to be signed.

return : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the signature. The signature is 65-bytes in
size, where the first 512-bits represent the signature and the other 8 bits represent the recovery ID. This function returns if the public key cannot be
found in the key store.

B.4.14. ext_crypto_ecdsa_sign_prehashed

Signs the prehashed message with the ecdsa key that corresponds to the given public key and key type in the keystore.

B.4.14.1. Version 1 - Prototype

Arguments

key_type_id : a pointer-size (Definition 215) to the key identifier (Definition 220).

key : a pointer to the buffer containing the 33-byte compressed public key.

msg : a pointer-size (Definition 216) to the message that is to be signed.

return : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the signature. The signature is 65-bytes in
size, where the first 512-bits represent the signature and the other 8 bits represent the recovery ID. This function returns if the public key cannot be
found in the key store.

B.4.15. ext_crypto_ecdsa_verify

Verifies the hash of the given message against an ECDSA signature.

B.4.15.1. Version 1 - Prototype

This function allows the verification of non-standard, overflowing ECDSA signatures, an implementation specific mechanism of the Rust
libsecp256k1 library, specifically the parse_overflowing function.

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature. The signature is 65-bytes in size, where the first 512-bits represent
the signature and the other 8 bits represent the recovery ID.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 33-byte compressed public key.

return : a i32 integer value equal 1 to if the signature is valid or a value equal to 0 if otherwise.

B.4.15.2. Version 2 - Prototype

Does not allow the verification of non-standard, overflowing ECDSA signatures.

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature. The signature is 65-bytes in size, where the first 512-bits represent
the signature and the other 8 bits represent the recovery ID.

(func $ext_crypto_ecdsa_sign_prehashed_version_1

 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_ecdsa_verify_version_1

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_ecdsa_verify_version_2

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://github.com/paritytech/libsecp256k1
https://docs.rs/libsecp256k1/0.7.0/libsecp256k1/struct.Signature.html#method.parse_overflowing
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 33-byte compressed public key.

return : a i32 integer value equal 1 to if the signature is valid or a value equal to 0 if otherwise.

B.4.16. ext_crypto_ecdsa_verify_prehashed

Verifies the prehashed message against a ECDSA signature.

B.4.16.1. Version 1 - Prototype

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature. The signature is 65-bytes in size, where the first 512-bits represent
the signature and the other 8 bits represent the recovery ID.

msg : a pointer to the 32-bit prehashed message to be verified.

key : a pointer to the 33-byte compressed public key.

return : a i32 integer value equal 1 to if the signature is valid or a value equal to 0 if otherwise.

B.4.17. ext_crypto_ecdsa_batch_verify

Registers a ECDSA signature for batch verification. Batch verification is enabled by calling ext_crypto_start_batch_verify (Section B.4.20.). The
result of the verification is returned by ext_crypto_finish_batch_verify (Section B.4.21.). If batch verification is not enabled, the signature is
verified immediately.

B.4.17.1. Version 1

Arguments

sig : a pointer (Definition 215) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 216) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or batched or a value equal 0 to if otherwise.

B.4.18. ext_crypto_secp256k1_ecdsa_recover

Verify and recover a secp256k1 ECDSA signature.

B.4.18.1. Version 1 - Prototype

This function can handle non-standard, overflowing ECDSA signatures, an implemenation specific mechanism of the Rust libsecp256k1 library,
specifically the parse_overflowing function.

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature in RSV format. V should be either 0/1 or 27/28 .

(func $ext_crypto_ecdsa_verify_prehashed_version_1

 (param $sig i32) (param $msg i32) (param $key i32) (return i32))

(func $ext_crypto_ecdsa_batch_verify_version_1

 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_secp256k1_ecdsa_recover_version_1

 (param $sig i32) (param $msg i32) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://github.com/paritytech/libsecp256k1
https://docs.rs/libsecp256k1/0.7.0/libsecp256k1/struct.Signature.html#method.parse_overflowing
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

msg : a pointer (Definition 215) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 216) to the SCALE encoded Result (Definition 201). On success it contains the 64-byte recovered public key or
an error type (Definition 221) on failure.

B.4.18.2. Version 2 - Prototype

Does not handle non-standard, overflowing ECDSA signatures.

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature in RSV format. V should be either or .

msg : a pointer (Definition 215) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 216) to the SCALE encoded Result (Definition 201). On success it contains the 64-byte recovered public key or
an error type (Definition 221) on failure.

B.4.19. ext_crypto_secp256k1_ecdsa_recover_compressed

Verify and recover a secp256k1 ECDSA signature.

B.4.19.1. Version 1 - Prototype

This function can handle non-standard, overflowing ECDSA signatures, an implemenation specific mechanism of the Rust libsecp256k1 library,
specifically the parse_overflowing function.

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature in RSV format. V should be either 0/1 or 27/28 .

msg : a pointer (Definition 215) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). On success it contains the 33-byte recovered public
key in compressed form on success or an error type (Definition 221) on failure.

B.4.19.2. Version 2 - Prototype

Does not handle non-standard, overflowing ECDSA signatures.

Arguments

sig : a pointer (Definition 215) to the buffer containing the 65-byte signature in RSV format. V should be either 0/1 or 27/28 .

msg : a pointer (Definition 215) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). On success it contains the 33-byte recovered public
key in compressed form on success or an error type (Definition 221) on failure.

B.4.20. ext_crypto_start_batch_verify

Starts the verification extension. The extension is a separate background process and is used to parallel-verify signatures which are pushed to the
batch with ext_crypto_ed25519_batch_verify (Section B.4.5.), ext_crypto_sr25519_batch_verify (Section B.4.10.) or
ext_crypto_ecdsa_batch_verify (Section B.4.17.). Verification will start immediately and the Runtime can retrieve the result when calling

(func $ext_crypto_secp256k1_ecdsa_recover_version_2

 (param $sig i32) (param $msg i32) (return i64))

(func $ext_crypto_secp256k1_ecdsa_recover_compressed_version_1

 (param $sig i32) (param $msg i32) (return i64))

(func $ext_crypto_secp256k1_ecdsa_recover_compressed_version_2

 (param $sig i32) (param $msg i32) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://github.com/paritytech/libsecp256k1
https://docs.rs/libsecp256k1/0.7.0/libsecp256k1/struct.Signature.html#method.parse_overflowing
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-ed25519-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-sr25519-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-ecdsa-batch-verify

ext_crypto_finish_batch_verify (Section B.4.21.).

B.4.20.1. Version 1 - Prototype

Arguments

None.

B.4.21. ext_crypto_finish_batch_verify

Finish verifying the batch of signatures since the last call to this function. Blocks until all the signatures are verified.

B.4.21.1. Version 1 - Prototype

Arguments

return : an i32 integer value equal to 1 if all the signatures are valid or a value equal to 0 if one or more of the signatures are invalid.

B.5. Hashing

Interface that provides functions for hashing with different algorithms.

B.5.1. ext_hashing_keccak_256

Conducts a 256-bit Keccak hash.

B.5.1.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 256-bit hash result.

B.5.2. ext_hashing_keccak_512

Conducts a 512-bit Keccak hash.

B.5.2.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

(func $ext_crypto_start_batch_verify_version_1)

CAUTION

Panics if ext_crypto_start_batch_verify (Section B.4.20.) was not called.

(func $ext_crypto_finish_batch_verify_version_1

 (return i32))

(func $ext_hashing_keccak_256_version_1

 (param $data i64) (return i32))

(func $ext_hashing_keccak_512_version_1

 (param $data i64) (return i32))

https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify

return : a pointer (Definition 215) to the buffer containing the 512-bit hash result.

B.5.3. ext_hashing_sha2_256

Conducts a 256-bit Sha2 hash.

B.5.3.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 256-bit hash result.

B.5.4. ext_hashing_blake2_128

Conducts a 128-bit Blake2 hash.

B.5.4.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 128-bit hash result.

B.5.5. ext_hashing_blake2_256

Conducts a 256-bit Blake2 hash.

B.5.5.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 256-bit hash result.

B.5.6. ext_hashing_twox_64

Conducts a 64-bit xxHash hash.

B.5.6.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 64-bit hash result.

(func $ext_hashing_sha2_256_version_1

 (param $data i64) (return i32))

(func $ext_hashing_blake2_128_version_1

 (param $data i64) (return i32))

(func $ext_hashing_blake2_256_version_1

 (param $data i64) (return i32))

(func $ext_hashing_twox_64_version_1

 (param $data i64) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

B.5.7. ext_hashing_twox_128

Conducts a 128-bit xxHash hash.

B.5.7.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 128-bit hash result.

B.5.8. ext_hashing_twox_256

Conducts a 256-bit xxHash hash.

B.5.8.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the data to be hashed.

return : a pointer (Definition 215) to the buffer containing the 256-bit hash result.

B.6. Offchain

The Offchain Workers allow the execution of long-running and possibly non-deterministic tasks (e.g. web requests, encryption/decryption and signing of
data, random number generation, CPU-intensive computations, enumeration/aggregation of on-chain data, etc.) which could otherwise require longer
than the block execution time. Offchain Workers have their own execution environment. This separation of concerns is to make sure that the block
production is not impacted by the long-running tasks.

All data and results generated by Offchain workers are unique per node and nondeterministic. Information can be propagated to other nodes by
submitting a transaction that should be included in the next block. As Offchain workers runs on their own execution environment they have access to
their own separate storage. There are two different types of storage available which are defined in Definition 222 and Definition 223.

Definition 222. Persisted Storage

Definition 223. Local Storage

Definition 224. HTTP Status Code

(func $ext_hashing_twox_128

 (param $data i64) (return i32))

(func $ext_hashing_twox_256

 (param $data i64) (return i32))

Persistent storage is non-revertible and not fork-aware. It means that any value set by the offchain worker is persisted even if that block (at which
the worker is called) is reverted as non-canonical (meaning that the block was surpassed by a longer chain). The value is available for the worker
that is re-run at the new (different block with the same block number) and future blocks. This storage can be used by offchain workers to handle
forks and coordinate offchain workers running on different forks.

Local storage is revertible and fork-aware. It means that any value set by the offchain worker triggered at a certain block is reverted if that block is
reverted as non-canonical. The value is NOT available for the worker that is re-run at the next or any future blocks.

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage

Definition 225. HTTP Error

B.6.1. ext_offchain_is_validator

Check whether the local node is a potential validator. Even if this function returns 1, it does not mean that any keys are configured or that the validator is
registered in the chain.

B.6.1.1. Version 1 - Prototype

Arguments

return : a i32 integer which is equal to 1 if the local node is a potential validator or a integer equal to 0 if it is not.

B.6.2. ext_offchain_submit_transaction

Given a SCALE encoded extrinsic, this function submits the extrinsic to the Host’s transaction pool, ready to be propagated to remote peers.

B.6.2.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the byte array storing the encoded extrinsic.

return : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). Neither on success or failure is there any additional
data provided. The cause of a failure is implementation specific.

B.6.3. ext_offchain_network_state

Returns the SCALE encoded, opaque information about the local node’s network state.

An enumerated data type that holds a finite set of distinct variants that gets SCALE-encoded as described in (Definition 199) and returned by
offchain http functions. The set of variants is defined as follows.

Id Name Description

0 DeadlineReached the deadline for the started request was reached.

1 IoError an error has occurred during the request.

2 Invalid the specified request identifier is invalid.

3 Finished(http_status) the request has finished with the given HTTP status code.

where

http_status : a 16-bit unsigned integer type representing the HTTP status code to be returned.

HTTP error, , is a varying data type (Definition 198) and specifies the error types of certain HTTP functions. Following values are possible:E

E =

⎩
⎨
⎧0

1
2

The deadile was reached
There was an IO error while processing the request

The Id of the request is invalid

(func $ext_offchain_is_validator_version_1 (return i32))

(func $ext_offchain_submit_transaction_version_1

 (param $data i64) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-variable-type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 226. Opaque Network State

B.6.3.1. Version 1 - Prototype

Arguments

result : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). On success it contains the Opaque network state
structure (Definition 226). On failure, an empty value is yielded where its cause is implementation specific.

B.6.4. ext_offchain_timestamp

Returns the current timestamp.

B.6.4.1. Version 1 - Prototype

Arguments

result : an u64 integer (typed as i64 due to wasm types) indicating the current UNIX timestamp (Definition 191).

B.6.5. ext_offchain_sleep_until

Pause the execution until the deadline is reached.

B.6.5.1. Version 1 - Prototype

Arguments

deadline : an u64 integer (typed as i64 due to wasm types) specifying the UNIX timestamp (Definition 191).

B.6.6. ext_offchain_random_seed

Generates a random seed. This is a truly random non deterministic seed generated by the host environment.

B.6.6.1. Version 1 - Prototype

Arguments

result : a pointer (Definition 215) to the buffer containing the 256-bit seed.

The Opaque network state structure, , is a SCALE encoded blob holding information about the the libp2p PeerId, , of the local node and a
list of libp2p Multiaddresses, , the node knows it can be reached at:

where

The information contained in this structure is naturally opaque to the caller of this function.

S P id

M , …M (0 n)

S = P , M , …M (id (0 n))

P =id b , … b (0 n)

M = b , … b (0 n)

(func $ext_offchain_network_state_version_1 (result i64))

(func $ext_offchain_timestamp_version_1 (result i64))

(func $ext_offchain_sleep_until_version_1 (param $deadline i64))

(func $ext_offchain_random_seed_version_1 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-opaque-network-state
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

B.6.7. ext_offchain_local_storage_set

Sets a value in the local storage. This storage is not part of the consensus, it’s only accessible by the offchain worker tasks running on the same
machine and is persisted between runs.

B.6.7.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 222) and a value equal to 2 for local
storage (Definition 223).

key : a pointer-size (Definition 216) to the key.

value : a pointer-size (Definition 216) to the value.

B.6.8. ext_offchain_local_storage_clear

Remove a value from the local storage.

B.6.8.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 222) and a value equal to 2 for local
storage (Definition 223).

key : a pointer-size (Definition 216) to the key.

B.6.9. ext_offchain_local_storage_compare_and_set

Sets a new value in the local storage if the condition matches the current value.

B.6.9.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 222) and a value equal to 2 for local
storage (Definition 223).

key : a pointer-size (Definition 216) to the key.

old_value : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the old key.

new_value : a pointer-size (Definition 216) to the new value.

result : an i32 integer equal to 1 if the new value has been set or a value equal to 0 if otherwise.

B.6.10. ext_offchain_local_storage_get

Gets a value from the local storage.

(func $ext_offchain_local_storage_set_version_1

 (param $kind i32) (param $key i64) (param $value i64))

(func $ext_offchain_local_storage_clear_version_1

 (param $kind i32) (param $key i64))

(fund $ext_offchain_local_storage_compare_and_set_version_1

 (param $kind i32) (param $key i64) (param $old_value i64)

 (param $new_value i64) (result i32))

https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

B.6.10.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 222) and a value equal to 2 for local
storage (Definition 223).

key : a pointer-size (Definition 216) to the key.

result : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the value or the corresponding key.

B.6.11. ext_offchain_http_request_start

Initiates a HTTP request given by the HTTP method and the URL. Returns the Id of a newly started request.

B.6.11.1. Version 1 - Prototype

Arguments

method : a pointer-size (Definition 216) to the HTTP method. Possible values are “GET” and “POST”.

uri : a pointer-size (Definition 216) to the URI.

meta : a future-reserved field containing additional, SCALE encoded parameters. Currently, an empty array should be passed.

result : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201) containing the i16 ID of the newly started request. On
failure no additionally data is provided. The cause of failure is implementation specific.

B.6.12. ext_offchain_http_request_add_header

Append header to the request. Returns an error if the request identifier is invalid, http_response_wait has already been called on the specified
request identifier, the deadline is reached or an I/O error has happened (e.g. the remote has closed the connection).

B.6.12.1. Version 1 - Prototype

Arguments

request_id : an i32 integer indicating the ID of the started request.

name : a pointer-size (Definition 216) to the HTTP header name.

value : a pointer-size (Definition 216) to the HTTP header value.

result : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). Neither on success or failure is there any additional

data provided. The cause of failure is implementation specific.

B.6.13. ext_offchain_http_request_write_body

Writes a chunk of the request body. Returns a non-zero value in case the deadline is reached or the chunk could not be written.

B.6.13.1. Version 1 - Prototype

(func $ext_offchain_local_storage_get_version_1

 (param $kind i32) (param $key i64) (result i64))

(func $ext_offchain_http_request_start_version_1

 (param $method i64) (param $uri i64) (param $meta i64) (result i64))

(func $ext_offchain_http_request_add_header_version_1

 (param $request_id i32) (param $name i64) (param $value i64) (result i64))

https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type

Arguments

request_id : an i32 integer indicating the ID of the started request.

chunk : a pointer-size (Definition 216) to the chunk of bytes. Writing an empty chunk finalizes the request.

deadline : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the UNIX timestamp (Definition 191).

Passing None blocks indefinitely.

result : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). On success, no additional data is provided. On error it
contains the HTTP error type (Definition 225).

B.6.14. ext_offchain_http_response_wait

Returns an array of request statuses (the length is the same as IDs). Note that if deadline is not provided the method will block indefinitely, otherwise
unready responses will produce DeadlineReached status.

B.6.14.1. Version 1 - Prototype

Arguments

ids : a pointer-size (Definition 216) to the SCALE encoded array of started request IDs.

deadline : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the UNIX timestamp (Definition 191).
Passing None blocks indefinitely.

result : a pointer-size (Definition 216) to the SCALE encoded array of request statuses (Definition 224).

B.6.15. ext_offchain_http_response_headers

Read all HTTP response headers. Returns an array of key/value pairs. Response headers must be read before the response body.

B.6.15.1. Version 1 - Prototype

Arguments

request_id : an i32 integer indicating the ID of the started request.

result : a pointer-size (Definition 216) to a SCALE encoded array of key/value pairs.

B.6.16. ext_offchain_http_response_read_body

Reads a chunk of body response to the given buffer. Returns the number of bytes written or an error in case a deadline is reached or the server closed
the connection. If 0 is returned it means that the response has been fully consumed and the request_id is now invalid. This implies that response
headers must be read before draining the body.

B.6.16.1. Version 1 - Prototype

Arguments

(func $ext_offchain_http_request_write_body_version_1

 (param $request_id i32) (param $chunk i64) (param $deadline i64) (result i64))

(func $ext_offchain_http_response_wait_version_1

 (param $ids i64) (param $deadline i64) (result i64))

(func $ext_offchain_http_response_headers_version_1

 (param $request_id i32) (result i64))

(func $ext_offchain_http_response_read_body_version_1

 (param $request_id i32) (param $buffer i64) (param $deadline i64) (result i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-http-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-http-status-code
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

request_id : an i32 integer indicating the ID of the started request.

buffer : a pointer-size (Definition 216) to the buffer where the body gets written to.

deadline : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the UNIX timestamp (Definition 191).
Passing None will block indefinitely.

result : a pointer-size (Definition 216) to the SCALE encoded Result value (Definition 201). On success it contains an i32 integer specifying the

number of bytes written or a HTTP error type (Definition 225) on failure.

B.7. Offchain Index

Interface that provides functions to access the Offchain DB through offchain indexing.

B.7.1. Offchain_index_set

Write a key-value pair to the Offchain DB in a buffered fashion.

B.7.1.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

value : a pointer-size (Definition 216) containing the value.

B.7.2. Offchain_index_clear

Remove a key and its associated value from the Offchain DB.

B.7.2.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 216) containing the key.

B.8. Trie

Interface that provides trie related functionality.

B.8.1. ext_trie_blake2_256_root

Compute a 256-bit Blake2 trie root formed from the iterated items.

B.8.1.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array
containing arbitrary key/value pairs (tuples).

(func $ext_offchain_index_set_version_1

 (param $key i64) (param $value i64))

(func $ext_offchain_index_clear_version_1

 (param $key i64))

(func $ext_trie_blake2_256_root_version_1

 (param $data i64) (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-http-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root.

B.8.1.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 216) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array
containing arbitrary key/value pairs (tuples).

version : the state version (Definition 218).

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root.

B.8.2. ext_trie_blake2_256_ordered_root

Compute a 256-bit Blake2 trie root formed from the enumerated items.

B.8.2.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded array
containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact
encoded integers (Definition 208).

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root result.

B.8.2.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 216) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded array

containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact
encoded integers (Definition 208).

version : the state version (Definition 218).

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root result.

B.8.3. ext_trie_keccak_256_root

Compute a 256-bit Keccak trie root formed from the iterated items.

B.8.3.1. Version 1 - Prototype

Arguments

(func $ext_trie_blake2_256_root_version_2

 (param $data i64) (param $version i32)

 (result i32))

(func $ext_trie_blake2_256_ordered_root_version_1

 (param $data i64) (result i32))

(func $ext_trie_blake2_256_ordered_root_version_2

 (param $data i64) (param $version i32)

 (result i32))

(func $ext_trie_keccak_256_root_version_1

 (param $data i64) (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

data : a pointer-size (Definition 216) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array
containing arbitrary key/value pairs.

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root.

B.8.3.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 216) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array

containing arbitrary key/value pairs.

version : the state version (Definition 218).

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root.

B.8.4. ext_trie_keccak_256_ordered_root

Compute a 256-bit Keccak trie root formed from the enumerated items.

B.8.4.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded array
containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact
encoded integers (Definition 208).

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root result.

B.8.4.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 216) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded array
containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact
encoded integers (Definition 208).

version : the state version (Definition 218).

result : a pointer (Definition 215) to the buffer containing the 256-bit trie root result.

B.8.5. ext_trie_blake2_256_verify_proof

Verifies a key/value pair against a Blake2 256-bit merkle root.

B.8.5.1. Version 1 - Prototype

(func $ext_trie_keccak_256_root_version_2

 (param $data i64) (param $version i32)

 (result i32))

(func $ext_trie_keccak_256_ordered_root_version_1

 (param $data i64) (result i32))

(func $ext_trie_keccak_256_ordered_root_version_2

 (param $data i64) (param $version i32)

 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 216) to an array containing the node proofs.

key : a pointer-size (Definition 216) to the key.

value : a pointer-size (Definition 216) to the value.

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.8.5.2. Version 2 - Prototype

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 216) to an array containing the node proofs.

key : a pointer-size (Definition 216) to the key.

value : a pointer-size (Definition 216) to the value.

version : the state version (Definition 218).

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.8.6. ext_trie_keccak_256_verify_proof

Verifies a key/value pair against a Keccak 256-bit merkle root.

B.8.6.1. Version 1 - Prototype

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 216) to an array containing the node proofs.

key : a pointer-size (Definition 216) to the key.

value : a pointer-size (Definition 216) to the value.

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.8.6.2. Version 2 - Prototype

(func $ext_trie_blake2_256_verify_proof_version_1

 (param $root i32) (param $proof i64)

 (param $key i64) (param $value i64)

 (result i32))

(func $ext_trie_blake2_256_verify_proof_version_2

 (param $root i32) (param $proof i64)

 (param $key i64) (param $value i64)

 (param $version i32) (result i32))

(func $ext_trie_keccak_256_verify_proof_version_1

 (param $root i32) (param $proof i64)

 (param $key i64) (param $value i64)

 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 216) to an array containing the node proofs.

key : a pointer-size (Definition 216) to the key.

value : a pointer-size (Definition 216) to the value.

version : the state version (Definition 218).

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.9. Miscellaneous

Interface that provides miscellaneous functions for communicating between the runtime and the node.

B.9.1. ext_misc_print_num

Print a number.

B.9.1.1. Version 1 - Prototype

Arguments

value : the number to be printed.

B.9.2. ext_misc_print_utf8

Print a valid UTF8 encoded buffer.

B.9.2.1. Version 1 - Prototype

Arguments:

: a pointer-size (Definition 216) to the valid buffer to be printed.

B.9.3. ext_misc_print_hex

Print any buffer in hexadecimal representation.

B.9.3.1. Version 1 - Prototype

Arguments:

data : a pointer-size (Definition 216) to the buffer to be printed.

(func $ext_trie_keccak_256_verify_proof_version_2

 (param $root i32) (param $proof i64)

 (param $key i64) (param $value i64)

 (param $version i32) (result i32))

(func $ext_misc_print_num_version_1 (param $value i64))

(func $ext_misc_print_utf8_version_1 (param $data i64))

(func $ext_misc_print_hex_version_1 (param $data i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

B.9.4. ext_misc_runtime_version

Extract the Runtime version of the given Wasm blob by calling Core_version (Section C.4.1.). Returns the SCALE encoded runtime version or None
(Definition 200) if the call fails. This function gets primarily used when upgrading Runtimes.

B.9.4.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 216) to the Wasm blob.

result : a pointer-size (Definition 216) to the SCALE encoded Option value (Definition 200) containing the Runtime version of the given Wasm
blob which is encoded as a byte array.

B.10. Allocator

The Polkadot Runtime does not include a memory allocator and relies on the Host API for all heap allocations. The beginning of this heap is marked by
the __heap_base symbol exported by the Polkadot Runtime. No memory should be allocated below that address, to avoid clashes with the stack and
data section. The same allocator made accessible by this Host API should be used for any other WASM memory allocations and deallocations outside
the runtime e.g. when passing the SCALE-encoded parameters to Runtime API calls.

B.10.1. ext_allocator_malloc

Allocates the given number of bytes and returns the pointer to that memory location.

B.10.1.1. Version 1 - Prototype

Arguments

size : the size of the buffer to be allocated.

result : a pointer (Definition 215) to the allocated buffer.

B.10.2. ext_allocator_free

Free the given pointer.

B.10.2.1. Version 1 - Prototype

Arguments

ptr : a pointer (Definition 215) to the memory buffer to be freed.

B.11. Logging

Interface that provides functions for logging from within the runtime.

Definition 227. Log Level

CAUTION

Calling this function is very expensive and should only be done very occasionally. For getting the runtime version, it requires instantiating the
Wasm blob (Section 2.6.2.) and calling the Core_version function (Section C.4.1.) in this blob.

(func $ext_misc_runtime_version_version_1 (param $data i64) (result i64))

(func $ext_allocator_malloc_version_1 (param $size i32) (result i32))

(func $ext_allocator_free_version_1 (param $ptr i32))

https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-state#sect-loading-runtime-code
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

B.11.1. ext_logging_log

Request to print a log message on the host. Note that this will be only displayed if the host is enabled to display log messages with given level and
target.

B.11.1.1. Version 1 - Prototype

Arguments

level : the log level (Definition 227).

target : a pointer-size (Definition 216) to the string which contains the path, module or location from where the log was executed.

message : a pointer-size (Definition 216) to the UTF-8 encoded log message.

B.11.2. ext_logging_max_level

Returns the max logging level used by the host.

B.11.2.1. Version 1 - Prototype

Arguments

None

Returns

result : the max log level (Definition 227) used by the host.

B.12. Abort Handler

Interface for aborting the execution of the runtime.

B.12.1. ext_panic_handler_abort_on_panic

Aborts the execution of the runtime with a given message. Note that the message will be only displayed if the host is enabled to display those types of
messages, which is implementation specific.

B.12.1.1. Version 1 - Prototype

The Log Level, , is a varying data type (Definition 198) and implies the emergency of the log. Possible log levels and the corresponding identifier
is as follows:

L

L =

⎩

⎨

⎧0
1
2
3
4

Error = 1
Warn = 2
Info = 3

Debug = 4
Trace = 5

(func $ext_logging_log_version_1

 (param $level i32) (param $target i64) (param $message i64))

(func $ext_logging_max_level_version_1

 (result i32))

(func $ext_panic_handler_abort_on_panic_version_1

 (param $message i64))

https://spec.polkadot.network/chap-host-api#defn-logging-log-level
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-logging-log-level
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Arguments

message : a pointer-size (Definition 216) to the UTF-8 encoded message.

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Appendix C: Runtime API

Description of how to interact with the Runtime through its exported functions

C.1. General Information

The Polkadot Host assumes that at least the constants and functions described in this Chapter are implemented in the Runtime Wasm blob.

It should be noted that the API can change through the Runtime updates. Therefore, a host should check the API versions of each module returned in
the api field by Core_version (Section C.4.1.) after every Runtime upgrade and warn if an updated API is encountered and that this might require an
update of the host.

This section describes all Runtime API functions alongside their arguments and the return values. The functions are organized into modules, with each
being versioned independently.

C.1.1. JSON-RPC API for external services

Polkadot Host implementers are encouraged to implement an API in order for external, third-party services to interact with the node. The JSON-RPC
Interface for Polkadot Nodes (PCP6) is a Polkadot Standard Proposal for such an API and makes it easier to integrate the node with existing tools
available in the Polkadot ecosystem, such as polkadot.js.org. The Runtime API has a few modules designed specifically for use in the official RPC API.

C.2. Runtime Constants

C.2.1. __heap_base

This constant indicates the beginning of the heap in memory. The space below is reserved for the stack and the data section. For more details please
refer to Section 2.6.3.1..

C.3. Runtime Call Convention

Definition 228. Runtime API Call Convention

See Section 2.6.3. for more information about the behavior of the Wasm Runtime. Also, note that any storage changes must be fork-aware (Section
2.4.5.).

C.4. Module Core

The Runtime API Call Convention describes that all functions receive and return SCALE-encoded data and, as a result, have the following
prototype signature:

where ptr points to the SCALE encoded tuple of the parameters passed to the function and len is the length of this data, while result is a

pointer-size (Definition Definition 216) to the SCALE-encoded return data.

(func $generic_runtime_entry

 (param $ptr i32) (parm $len i32) (result i64))

NOTE

This section describes Version 3 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://github.com/w3f/PCPs/blob/master/PSPs/drafts/psp-6.md
https://github.com/w3f/PCPs/blob/master/PSPs/drafts/psp-6.md
https://polkadot.js.org/
https://spec.polkadot.network/chap-state#sect-memory-management
https://spec.polkadot.network/chap-state#sect-code-executor
https://spec.polkadot.network/chap-state#sect-managing-multiple-states
https://spec.polkadot.network/chap-state#sect-managing-multiple-states
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.4.1. Core_version

Returns the version identifiers of the Runtime. This function can be used by the Polkadot Host implementation when it seems appropriate, such as for
the JSON-RPC API as described in Section C.1.1..

Arguments

None

Return

A data structure of the following format:

Table 7. Details of the version that the data type returns from the Runtime function.

Name Type Description

spec_name String Runtime identifier

impl_name String Name of the implementation (e.g. C++)

authoring_version Unsigned 32-bit integer Version of the authorship interface

spec_version Unsigned 32-bit integer Version of the Runtime specification

impl_version Unsigned 32-bit integer Version of the Runtime implementation

apis ApiVersions (Definition 229) List of supported APIs along with their version

transaction_version Unsigned 32-bit integer Version of the transaction format

state_version Unsigned 8-bit integer Version of the trie format

Definition 229. ApiVersions

Requires Core_initialize_block to be called beforehand.

C.4.2. Core_execute_block

This function executes a full block and all its extrinsics and updates the state accordingly. Additionally, some integrity checks are executed, such as
validating if the parent hash is correct and that the transaction root represents the transactions. Internally, this function performs an operation similar to
the process described in Build-Block, by calling Core_initialize_block ,BlockBuilder_apply_extrinsics and
BlockBuilder_finalize_block .

This function should be called when a fully complete block is available that is not actively being built on, such as blocks received from other peers. State
changes resulting from calling this function are usually meant to persist when the block is imported successfully.

Additionally, the seal digest in the block header, as described in Definition 11, must be removed by the Polkadot host before submitting the block.

Arguments

NOTE

For newer Runtimes, the version identifiers can be read directly from the Wasm blob in the form of custom sections (Section 2.6.3.4.). That method
of retrieving this data should be preferred since it involves significantly less overhead.

ApiVersions is a specialized type for the (Section C.4.1.) function entry. It represents an array of tuples, where the first value of the tuple is an
array of 8-bytes containing the Blake2b hash of the API name. The second value of the tuple is the version number of the corresponding API.

ApiVersions :=

T :=

(T , … ,T)0 n

((b , … , b), UINT32)0 7

https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/chap-runtime-api#defn-rt-apisvec
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#sect-runtime-version-custom-section
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

A block represented as a tuple consisting of a block header, as described in Definition 10, and the block body, as described in Definition 13.

Return

None.

C.4.3. Core_initialize_block

Sets up the environment required for building a new block as described in Build-Block.

Arguments

The header of the new block as defined in Definition 10. The values , and are left empty.

Return

None.

C.5. Module Metadata

C.5.1. Metadata_metadata

Returns native Runtime metadata in an opaque form. This function can be used by the Polkadot Host implementation when it seems appropriate, such
as for the JSON-RPC API as described in Section C.1.1., and returns all the information necessary to build valid transactions.

Arguments

None.

Return

The scale-encoded (Section A.2.2.) runtime metadata as described in Chapter 12.

C.5.2. Metadata_metadata_at_version

Returns native Runtime metadata in an opaque form at a particular version.

Arguments

Metadata version represented by an unsigned 32-bit integer.

Return

The scale-encoded (Section A.2.2.) runtime metadata as described in Chapter 12 at the particular version.

C.5.3. Metadata_metadata_versions

Returns supported metadata versions.

Arguments

None.

Return

A vector of supported metadata versions of type vec<u32> .

H r H e H d

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/sect-metadata
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/sect-metadata
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.6. Module BlockBuilder

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.6.1. BlockBuilder_apply_extrinsic

Apply the extrinsic outside of the block execution function. This does not attempt to validate anything regarding the block, but it builds a list of
transaction hashes.

Arguments

A byte array of varying sizes containing the opaque extrinsic.

Return

Returns the varying datatype ApplyExtrinsicResult as defined in Definition 230. This structure lets the block builder know whether an extrinsic
should be included in the block or rejected.

Definition 230. ApplyExtrinsicResult

Definition 231. DispatchOutcome

Definition 232. DispatchError

NOTE

This section describes Version 4 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

ApplyExtrinsicResult is a varying data type as defined in Definition 201. This structure can contain multiple nested structures, indicating either
module dispatch outcomes or transaction invalidity errors.

Table 8. Possible values of varying data type ApplyExtrinsicResult.

Id Description Type

0 Outcome of dispatching the extrinsic. DispatchOutcome (Definition 231)

1 Possible errors while checking the validity of a transaction. TransactionValidityError (Definition 234)

INFO

As long as a DispatchOutcome (Definition 231) is returned, the extrinsic is always included in the block, even if the outcome is a dispatch error.
Dispatch errors do not invalidate the block and all state changes are persisted.

DispatchOutcome is the varying data type as defined in Definition 201.

Table 9. Possible values of varying data type DispatchOutcome.

Id Description Type

0 Extrinsic is valid and was submitted successfully. None

1 Possible errors while dispatching the extrinsic. DispatchError (Definition 232)

DispatchError is a varying data type as defined in Definition 198. Indicates various reasons why a dispatch call failed.

Table 10. Possible values of varying data type DispatchError.

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#defn-rte-apply-extrinsic-result
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-outcome
https://spec.polkadot.network/chap-runtime-api#defn-rte-transaction-validity-error
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-outcome
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-error
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 233. CustomModuleError

Definition 234. TransactionValidityError

Definition 235. InvalidTransaction

Id Description Type

0 Some unknown error occurred. SCALE encoded byte array containing a valid UTF-8 sequence.

1 Failed to look up some data. None

2 A bad origin. None

3 A custom error in a module. CustomModuleError (Definition 233)

CustomModuleError is a tuple appended after a possible error in as defined in Definition 232.

Table 11. Possible values of varying data type CustomModuleError.

Name Description Type

Index
Module index matching the metadata
module index.

Unsigned 8-bit integer.

Error Module-specific error value. Unsigned 8-bit integer

Message Optional error message.
Varying data type Option (Definition 200). The optional value is a SCALE-encoded byte
array containing a valid UTF-8 sequence.

INFO

Whenever TransactionValidityError (Definition 234) is returned, the contained error type will indicate whether an extrinsic should be outright
rejected or requested for a later block. This behavior is clarified further in Definition 235 and respectively Definition 236.

TransactionValidityError is a varying data type as defined in Definition 198. It indicates possible errors that can occur while checking the validity
of a transaction.

Table 12. Possible values of varying data type TransactionValidityError.

Id Description Type

0 Transaction is invalid. InvalidTransaction (Definition 235)

1 Transaction validity can’t be determined. UnknownTransaction (Definition 236)

InvalidTransaction is a varying data type as defined in Definition 198 and specifies the invalidity of the transaction in more detail.

Table 13. Possible values of varying data type InvalidTransaction.

Id Description Type Reject

0 Call of the transaction is not expected. None Yes

1 General error to do with the inability to pay some fees (e.g., account balance too low). None Yes

https://spec.polkadot.network/chap-runtime-api#defn-rte-custom-module-error
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-error
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-transaction-validity-error
https://spec.polkadot.network/chap-runtime-api#defn-rte-invalid-transaction
https://spec.polkadot.network/chap-runtime-api#defn-rte-unknown-transaction
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-invalid-transaction
https://spec.polkadot.network/chap-runtime-api#defn-rte-unknown-transaction
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 236. UnknownTransaction

C.6.2. BlockBuilder_finalize_block

Finalize the block - it is up to the caller to ensure that all header fields are valid except for the state root. State changes resulting from calling this
function are usually meant to persist upon successful execution of the function and appending of the block to the chain.

Arguments

None.

Return

The header of the new block as defined in Definition 10.

C.6.3. BlockBuilder_inherent_extrinisics:

Generates the inherent extrinsics, which are explained in more detail in Section 2.3.3.. This function takes a SCALE-encoded hash table as defined in
Definition 202 and returns an array of extrinsics. The Polkadot Host must submit each of those to the BlockBuilder_apply_extrinsic , described in
Section C.6.1.. This procedure is outlined in Build-Block.

Arguments

A Inherents-Data structure as defined in Definition 15.

Return

A byte array of varying sizes containing extrinisics. Each extrinsic is a byte array of varying size.

Id Description Type Reject

2 General error to do with the transaction not yet being valid (e.g., nonce too high). None No

3 General error to do with the transaction being outdated (e.g., nonce too low). None Yes

4 General error to do with the transactions’ proof (e.g., signature) None Yes

5 The transaction birth block is ancient. None Yes

6 The transaction would exhaust the resources of the current block. None No

7 Some unknown error occurred. Unsigned 8-bit integer Yes

8 An extrinsic with mandatory dispatch resulted in an error. None Yes

9 A transaction with a mandatory dispatch (only inherents are allowed to have mandatory dispatch). None Yes

UnknownTransaction is a varying data type as defined in Definition 198 and specifies the unknown invalidity of the transaction in more detail.

Table 14. Possible values of varying data type UnknownTransaction.

Id Description Type Reject

0 Could not look up some information that is required to validate the transaction. None Yes

1 No validator found for the given unsigned transaction. None Yes

2 Any other custom unknown validity that is not covered by this type. Unsigned 8-bit integer Yes

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#sect-inherents
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/chap-runtime-api#sect-rte-apply-extrinsic
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

C.6.4. BlockBuilder_check_inherents

Checks whether the provided inherent is valid. This function can be used by the Polkadot Host when deemed appropriate, e.g., during the block-building
process.

Arguments

A block represented as a tuple consisting of a block header as described in Definition 10 and the block body as described in Definition 13.

A Inherents-Data structure as defined in Definition 15.

Return

A data structure of the following format:

where

 is a boolean indicating whether the check was successful.

 is a boolean indicating whether a fatal error was encountered.

 is a Inherents-Data structure as defined in Definition 15 containing any errors created by this Runtime function.

C.7. Module TaggedTransactionQueue

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.7.1. TaggedTransactionQueue_validate_transaction

This entry is invoked against extrinsics submitted through a transaction network message (Section 4.8.6.) or by an off-chain worker through the Host
API (Section B.6.2.).

It indicates if the submitted blob represents a valid extrinsics, the order in which it should be applied and if it should be gossiped to other peers.
Furthermore, this function gets called internally when executing blocks with the runtime function as described in Section C.4.2..

Arguments

The source of the transaction as defined in Definition 237.

A byte array that contains the transaction.

The hash of the parent of the block that the transaction is included in.

Definition 237. TransactionSource

o, f ,e(e)

o

f e

e

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

TransactionSource is an enum describing the source of a transaction and can have one of the following values:

Table 15. The TransactionSource enum

Id Name Description

0 InBlock Transaction is already included in a block.

1 Local Transaction is coming from a local source, e.g. off-chain worker.

2 External Transaction has been received externally, e.g. over the network.

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-host-api#sect-ext-offchain-submit-transaction
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-execute-block
https://spec.polkadot.network/chap-runtime-api#defn-transaction-source
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Return

This function returns a Result as defined in Definition 201 which contains the type ValidTransaction as defined in Definition 238 on success and the
type TransactionValidityError as defined in Definition 234 on failure.

Definition 238. ValidTransaction

:::

C.8. Module OffchainWorkerApi

Does not require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.8.1. OffchainWorkerApi_offchain_worker

Starts an off-chain worker and generates extrinsics. [To do: when is this called?]

Arguments

The block header as defined in Definition 10.

Return

None.

ValidTransaction is a tuple that contains information concerning a valid transaction.

Table 16. The tuple provided by in the case the transaction is judged to be valid.

Name Description Type

Priority
Determines the ordering of two transactions that have all their dependencies (required tags) are
satisfied.

Unsigned 64-bit
integer

Requires List of tags specifying extrinsics which should be applied before the current extrinsics can be applied.
Array containing
inner arrays

Provides
Informs Runtime of the extrinsics depending on the tags in the list that can be applied after current
extrinsics are being applied. Describes the minimum number of blocks for the validity to be correct.

Array containing
inner arrays

Longevity After this period, the transaction should be removed from the pool or revalidated.
Unsigned 64-bit
integer

Propagate A flag indicating if the transaction should be gossiped to other peers. Boolean

INFO

If Propagate is set to false the transaction will still be considered for inclusion in blocks that are authored on the current node, but should not be
gossiped to other peers.

INFO

If this function gets called by the Polkadot Host in order to validate a transaction received from peers, the Polkadot Host disregards and rewinds
state changes resulting in such a call.

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-runtime-api#defn-valid-transaction
https://spec.polkadot.network/chap-runtime-api#defn-rte-transaction-validity-error
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.9. Module ParachainHost

C.9.1. ParachainHost_validators

Returns the validator set at the current state. The specified validators are responsible for backing parachains for the current state.

Arguments

None.

Return

An array of public keys representing the validators.

C.9.2. ParachainHost_validator_groups

Returns the validator groups (Definition 146) used during the current session. The validators in the groups are referred to by the validator set Id
(Definition 78).

Arguments

None

Return

An array of tuples, , of the following format:

where

 is an array of the validator set Ids (Definition 78).

 indicates the block number where the session started.

 indicates how often groups rotate. 0 means never.

 indicates the current block number.

C.9.3. ParachainHost_availability_cores

Returns information on all availability cores (Definition 145).

Arguments

None

Return

An array of core states, S, of the following format:

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

T

T = I,G()

I = v , … v (n m)

G = B , f ,B (s c)

I

B s

f

B c

S =

⎩
⎨
⎧0

1
2

→
→
→

C o

C s

ϕ

C =o n ,B ,B ,n , b,G ,C ,C (u o t t i h d)

C =s P d,C (i i)

https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chapter-anv#defn-availability-core
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

where

 specifies the core state. 0 indicates that the core is occupied, 1 implies it’s currently free but scheduled and given the opportunity to occupy
and 2 implies it’s free and there’s nothing scheduled.

 is an Option value (Definition 200) which can contain a value if the core was freed by the Runtime and indicates the assignment that is
next scheduled on this core. An empty value indicates there is nothing scheduled.

 indicates the relay chain block number at which the core got occupied.

 indicates the relay chain block number the core will time-out at, if any.

 is an Option value (Definition 200) which can contain a value if the core is freed by a time-out and indicates the assignment that is next
scheduled on this core. An empty value indicates there is nothing scheduled.

 is a bitfield array (Definition 151). A majority of assigned validators voting with values means that the core is available.

 indicates the assigned validator group index (Definition 146) is to distribute availability pieces of this candidate.

 indicates the hash of the candidate occupying the core.

 is the candidate descriptor (Definition 116).

 is an Option value (Definition 200) which can contain the collators public key indicating who should author the block.

C.9.4. ParachainHost_persisted_validation_data

Returns the persisted validation data for the given parachain Id and a given occupied core assumption.

Arguments

The parachain Id (Definition 144).

An occupied core assumption (Definition 239).

Return

An Option value (Definition 200) which can contain the persisted validation data (Definition 240). The value is empty if the parachain Id is not
registered or the core assumption is of index , meaning that the core was freed.

Definition 239. Occupied Core Assumption

Definition 240. Persisted Validation Data

S

n u C s

B o

B t

n t C s

b > 3
2 1

G i

C h

C d

C i

2

An occupied core assumption is used for fetching certain pieces of information about a parachain by using the relay chain API. The assumption
indicates how the Runtime API should compute the result. The assumptions, A, is a varying datatype of the following format:

where 0 indicates that the candidate occupying the core was made available and included to free the core, 1 indicates that it timed-out and freed
the core without advancing the parachain and 2 indicates that the core was not occupied to begin with.

A =

⎩
⎨
⎧0

1
2

→
→
→

ϕ

ϕ

ϕ

The persisted validation data provides information about how to create the inputs for the validation of a candidate by calling the Runtime. This
information is derived from the parachain state and will vary from parachain to parachain, although some of the fields may be the same for every
parachain. This validation data acts as a way to authorize the additional data (such as messages) the collator needs to pass to the validation
function.

The persisted validation data, , is a datastructure of the following format:

where

D pv

D =pv P ,H ,H ,m (h i r b)

https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-bitfield-array
https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/chapter-anv#defn-candidate-descriptor
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-occupied-core-assumption
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data

C.9.5. ParachainHost_assumed_validation_data

Returns the persisted validation data for the given parachain Id along with the corresponding Validation Code Hash. Instead of accepting validation
about para, matches the validation data hash against an expected one and yields None if they are unequal.

Arguments

The Parachain Id (Definition 144).

Expected Persistent Validation Data Hash (Definition 240).

Return

An Option value (Definition 200) which can contain the pair of persisted validation data (Definition 240) and Validation Code Hash. The value is
None if the parachain Id is not registered or the validation data hash does not match the expected one.

C.9.6. ParachainHost_check_validation_outputs

Checks if the given validation outputs pass the acceptance criteria.

Arguments

The parachain Id (Definition 144).

The candidate commitments (Definition 117).

Return

A boolean indicating whether the candidate commitments pass the acceptance criteria.

C.9.7. ParachainHost_session_index_for_child

Returns the session index that is expected at the child of a block.

Arguments

None

Return

A unsigned 32-bit integer representing the session index.

C.9.8. ParachainHost_validation_code

Fetches the validation code (Runtime) of a parachain by parachain Id.

Arguments

The parachain Id (Definition 144).

The occupied core assumption (Definition 239).

 is the parent head data (Definition 143).

 is the relay chain block number this is in the context of.

 is the relay chain storage root this is in the context of.

 is the maximum legal size of the PoV block, in bytes.

The persisted validation data is fetched via the Runtime API (Section C.9.4.).

P h

H i

H r

m b

CAUTION

TODO clarify session index

https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-occupied-core-assumption
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-persisted-validation-data

Return

An Option value (Definition 200) containing the full validation code in a byte array. This value is empty if the parachain Id cannot be found or the
assumption is wrong.

C.9.9. ParachainHost_validation_code_by_hash

Returns the validation code (Runtime) of a parachain by its hash.

Arguments

The hash value of the validation code.

Return

An Option value (Definition 200) containing the full validation code in a byte array. This value is empty if the parachain Id cannot be found or the
assumption is wrong.

C.9.10. ParachainHost_validation_code_hash

Returns the validation code hash of a parachain.

Arguments

The parachain Id (Definition 144).

An occupied core assumption (Definition 239).

Return

An Option value (Definition 200) containing the hash value of the validation code. This value is empty if the parachain Id cannot be found or the
assumption is wrong.

C.9.11. ParachainHost_candidate_pending_availability

Returns the receipt of a candidate pending availability for any parachain assigned to an occupied availability core.

Arguments

The parachain Id (Definition 144).

Return

An Option value (Definition 200) containing the committed candidate receipt (Definition 114). This value is empty if the given parachain Id is not
assigned to an occupied availability core.

C.9.12. ParachainHost_candidate_events

Returns an array of candidate events that occurred within the latest state.

Arguments

None

Return

An array of single candidate events, E, of the following format:

where

E =

⎩
⎨
⎧0

1
2

→
→
→

d

d

C ,h, I (r c)

d = C ,h, I ,G (r c i)

https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-occupied-core-assumption
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt

 specifies the event type of the candidate. 0 indicates that the candidate receipt was backed in the latest relay chain block, 1 indicates that it
was included and became a parachain block at the latest relay chain block and 2 indicates that the candidate receipt was not made available
and timed out.

 is the candidate receipt (Definition 114).

 is the parachain head data (Definition 143).

 is the index of the availability core as can be retrieved in Section C.9.3. that the candidate is occupying. If is of variant , then this
indicates the core index the candidate was occupying.

 is the group index (Definition 146) that is responsible of backing the candidate.

C.9.13. ParachainHost_session_info

Get the session info of the given session, if available.

Arguments

The unsigned 32-bit integer indicating the session index.

Return

An Option type (Definition 200) which can contain the session info structure, , of the following format:

where

 indicates the validators of the current session in canonical order. There might be more validators in the current session than validators
participating in parachain consensus, as returned by the Runtime API (Section C.9.1.).

 indicates the validator authority discovery keys for the given session in canonical order. The first couple of validators are equal to the
corresponding validators participating in the parachain consensus, as returned by the Runtime API (Section C.9.1.). The remaining authorities
are not participating in the parachain consensus.

 indicates the assignment keys for validators. There might be more authorities in the session that validators participating in parachain

consensus, as returned by the Runtime API (Section C.9.1.).

 indicates the validator groups in shuffled order.

 is public key of the authority.

 is the authority set Id (Definition 78).

 is an unsigned 32-bit integer indicating the number of availability cores used by the protocol during the given session.

 is an unsigned 32-bit integer indicating the zeroth delay tranche width.

 is an unsigned 32-bit integer indicating the number of samples an assigned validator should do for approval voting.

 is an unsigned 32-bit integer indicating the number of delay tranches in total.

 is an unsigned 32-bit integer indicating how many BABE slots must pass before an assignment is considered a “no-show”.

 is an unsigned 32-bit integer indicating the number of validators needed to approve a block.

E

C r

h

I c E 2

G i

S

S = A,D,K,G, c, z, s, d,x, a()

A = v , … v (n m)

D = v , … v (
 n m)

K = v , … v (n m)

G = g , … g (n m)

g = A , …A (n m)

A

D

K

G

v n

A n

c

z

s

d

x

a

https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validators
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validators
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validators
https://spec.polkadot.network/sect-finality#defn-authority-set-id

C.9.14. ParachainHost_dmq_contents

Returns all the pending inbound messages in the downward message queue for a given parachain.

Arguments

The parachain Id (Definition 144).

Return

An array of inbound downward messages (Definition 148).

C.9.15. ParachainHost_inbound_hrmp_channels_contents

Returns the contents of all channels addressed to the given recipient. Channels that have no messages in them are also included.

Arguments

The parachain Id (Definition 144).

Return

An array of inbound HRMP messages (Definition 150).

C.9.16. ParachainHost_on_chain_votes

Returns disputes relevant from on-chain, backing votes, and resolved disputes.

Arguments

None

Return

An Option (Definition 200) type which can contain the scraped on-chain votes data (Definition 241).

Definition 241. Scraped On Chain Vote

C.9.17. ParachainHost_pvfs_require_precheck

This runtime API fetches all PVFs that require pre-checking voting. The PVFs are identified by their code hashes. As soon as the PVF gains the
required support, the runtime API will not return the PVF anymore.

Arguments

Contains the scraped runtime backing votes and resolved disputes.

The scraped on-chain votes data, , is a data structure of the following format:

where:

 is the u32 integer representing the session index in which the block was introduced.

 is the set of backing validators for each candidate, represented by its candidate receipt (Definition 114). Each candidate has a list of
, the pair of validator index and validation attestations (Definition 113).

 is a set of dispute statements (Section 8.7.2.1.). Note that the above is unrelated to the backers of the dispute candidates.

SOCV

SOCV = (S ,BV , d)i

BV = [C , [(i, a)]]r

S i

BV C r

(i, a)
d BV

CAUTION

PVF Pre-Checker subsystem is still Work-in-Progress, hence the below APIs are subject to change.

https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-downward-message
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-inbound-hrmp-message
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-scraped-on-chain-vote
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#net-msg-dispute-request

None

Return

A list of validation code hashes that require prechecking of votes by validators in the active set.

C.9.18. ParachainHost_submit_pvf_check_statement

This runtime API submits the judgment for a PVF, whether it is approved or not. The voting process uses unsigned transactions. The check is circulated
through the network via gossip, similar to a normal transaction. At some point, the validator will include the statement in the block, where it will be
processed by the runtime. If that was the last vote before gaining the super-majority, this PVF would not be returned by pvfs_require_precheck

(Section C.9.17.) anymore.

Arguments

A PVF pre checking statement (Definition 242) to be submitted into the transaction pool.

Validator Signature (Definition 113).

Return

None

Definition 242. PVF Check Statement

C.9.19. ParachainHost_disputes

This runtime API fetches all on-chain disputes.

Arguments

None

Return

A list of (SessionIndex, CandidateHash, DisputeState).

C.9.20. ParachainHost_executor_params

This runtime API returns execution parameters for the session.

Arguments

Session Index

This is a statement by the validator who ran the pre-checking process for a PVF. A PVF is identified by the ValidationCodeHash. The statement is
valid only during a single session, specified in the session_index .

The PVF Check Statement , is a datastructure of the following format:

where:

 is a boolean denoting if the subject passed pre-checking.

 is the validation code hash.

 is a u32 integer representing the session index.

 is the validator index (Definition 113).

S pvf

S =pvf (b,V C ,S ,V)H i i

b

V C H

S i

V i

CAUTION

TODO clarify DisputeState

https://spec.polkadot.network/chap-runtime-api#sect-rt-api-pvfs-require-precheck
https://spec.polkadot.network/chap-runtime-api#defn-pvf-check-statement
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data

Return

Option type of Executor Parameters.

C.10. Module GrandpaApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.10.1. GrandpaApi_grandpa_authorities

This entry fetches the list of GRANDPA authorities according to the genesis block and is used to initialize an authority list at genesis, defined in
Definition 33. Any future authority changes get tracked via Runtime-to-consensus engine messages, as described in Section 3.3.2..

Arguments

None.

Return

An authority list as defined in Definition 33.

C.10.2. GrandpaApi_current_set_id

This entry fetches the list of GRANDPA authority set IDs (Definition 78). Any future authority changes get tracked via Runtime-to-consensus engine
messages, as described in Section 3.3.2..

Arguments

None.

Return

An authority set ID as defined in Definition 78.

C.10.3. GrandpaApi_submit_report_equivocation_unsigned_extrinsic

A GRANDPA equivocation occurs when a validator votes for multiple blocks during one voting subround, as described further in Definition 85. The
Polkadot Host is expected to identify equivocators and report those to the Runtime by calling this function.

Arguments

The equivocation proof of the following format:

where

 is the authority set id as defined in Definition 78.

CAUTION

TODO clarify session index

CAUTION

TODO clarify Executor Parameters

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

G =Ep

e =

(id , e, r,A ,B ,B ,A ,B ,B ,A)V id h
1

n
1

sig
1

h
2

n
2

sig
2

 {
0
1

Equivocation at prevote stage
Equivocation at precommit stage

mathrm id { }V

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-voter-equivocation
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

 indicates the stage at which the equivocation occurred.

 is the round number the equivocation occurred.

 is the public key of the equivocator.

 is the block hash of the first block the equivocator voted for.

 is the block number of the first block the equivocator voted for.

 is the equivocators signature of the first vote.

 is the block hash of the second block the equivocator voted for.

 is the block number of the second block the equivocator voted for.

 is the equivocators signature of the second vote.

A proof of the key owner in an opaque form as described in Section C.10.4..

Return

A SCALE encoded Option as defined in Definition 200 containing an empty value on success.

C.10.4. GrandpaApi_generate_key_ownership_proof

Generates proof of the membership of a key owner in the specified block state. The returned value is used to report equivocations as described in
Section C.10.3..

Arguments

The authority set id as defined in Definition 78.

The 256-bit public key of the authority.

Return

A SCALE encoded Option as defined in Definition 200 containing the proof in an opaque form.

C.11. Module BabeApi

All calls in this module require Core_initialized_block (Section C.4.3.) to be called beforehand.

C.11.1. BabeApi_configuration

This entry is called to obtain the current configuration of the BABE consensus protocol.

Arguments

None.

Return

A tuple containing configuration data used by the Babe consensus engine.

Table 17. The tuple provided by BabeApi_configuration.

e

r

A mathrm id{ }

B h
1

B n
1

A mathrm sig{ { }}
1

B h
2

B n
2

A mathrm sig{ { }}
2

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#sect-grandpaapi_generate_key_ownership_proof
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-grandpaapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Name Description Type

SlotDuration
The slot duration in milliseconds. Currently, only the value provided by this
type at genesis will be used. Dynamic slot duration may be supported in the
future.

Unsigned 64bit integer

EpochLength The duration of epochs in slots. Unsigned 64bit integer

Constant
A constant value that is used in the threshold calculation formula as defined in
Definition 64.

Tuple containing two unsigned 64bit
integers

GenesisAuthorities The authority list for the genesis epoch as defined in Definition 33.
Array of tuples containing a 256-bit
byte array and an unsigned 64bit
integer

Randomness The randomness for the genesis epoch 32-byte array

SecondarySlot
Whether this chain should run with a round-robin-style secondary slot and if
this secondary slot requires the inclusion of an auxiliary VRF output (Section
5.2.).

A one-byte enum as defined in
Definition 63 as .

C.11.2. BabeApi_current_epoch_start

Finds the start slot of the current epoch.

Arguments

None.

Return

A unsigned 64-bit integer indicating the slot number.

C.11.3. BabeApi_current_epoch

Produces information about the current epoch.

Arguments

None.

Return

A data structure of the following format:

where

 is a unsigned 64-bit integer representing the epoch index.

 is an unsigned 64-bit integer representing the starting slot of the epoch.

 is an unsigned 64-bit integer representing the duration of the epoch.

 is an authority list as defined in Definition 33.

 is a 256-bit array containing the randomness for the epoch as defined in Definition 76.

C.11.4. BabeApi_next_epoch

Produces information about the next epoch.

Arguments

2 nd

e , s , d,A, r(i s)

e i

s s

d

A

r

https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness

None.

Return

Returns the same data structure as described in Section C.11.3..

C.11.5. BabeApi_generate_key_ownership_proof

Generates proof of the membership of a key owner in the specified block state. The returned value is used to report equivocations as described in
Section C.11.6..

Arguments

The unsigned 64-bit integer indicating the slot number.

The 256-bit public key of the authority.

Return

A SCALE encoded Option as defined in Definition Definition 200 containing the proof in an opaque form.

C.11.6. BabeApi_submit_report_equivocation_unsigned_extrinsic

A BABE equivocation occurs when a validator produces more than one block at the same slot. The proof of equivocation are the given distinct headers
that were signed by the validator and which include the slot number. The Polkadot Host is expected to identify equivocators and report those to the
Runtime using this function.

Arguments

The equivocation proof of the following format:

where

 is the public key of the equivocator.

 is the slot as described in Definition 59 at which the equivocation occurred.

 is the block header of the first block produced by the equivocator.

 is the block header of the second block produced by the equivocator.

Unlike during block execution, the Seal in both block headers is not removed before submission. The block headers are submitted in its full
form.

An proof of the key owner in an opaque form as described in Section C.11.5..

Return

A SCALE encoded Option as defined in Definition 200 containing an empty value on success.

C.12. Module AuthorityDiscoveryApi

All calls in this module require (Section Section C.4.3.) to be called beforehand.

INFO

If there are more than two blocks that cause an equivocation, the equivocation only needs to be reported once i.e. no additional equivocations
must be reported for the same slot.

B =mathrm Ep{ } A , s,h ,h (mathrm id{ } 1 2)

A mathrm id{ }

s

h 1

h 2

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#sect-babeapi_current_epoch
https://spec.polkadot.network/chap-runtime-api#sect-babeapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-runtime-api#sect-babeapi_generate_key_ownership_proof
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.12.1. AuthorityDiscoveryApi_authorities

A function that helps to discover authorities.

Arguments

None.

Return

A byte array of varying size containing 256-bit public keys of the authorities.

C.13. Module SessionKeys

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.13.1. SessionKeys_generate_session_keys

Generates a set of session keys with an optional seed. The keys should be stored within the keystore exposed by the Host API. The seed needs to be
valid and UTF-8 encoded.

Arguments

A SCALE-encoded Option as defined in Definition 200 containing an array of varying sizes indicating the seed.

Return

A byte array of varying size containing the encoded session keys.

C.13.2. SessionKeys_decode_session_keys

Decodes the given public session keys. Returns a list of raw public keys, including their key type.

Arguments

An array of varying size containing the encoded public session keys.

Return

An array of varying size containing tuple pairs of the following format:

where is an array of varying sizes containing the raw public key and is a 4-byte array indicating the key type.

C.14. Module AccountNonceApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.14.1. AccountNonceApi_account_nonce

Get the current nonce of an account. This function can be used by the Polkadot Host implementation when it seems appropriate, such as for the JSON-
RPC API as described in Section C.1.1..

Arguments

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

k, k (mathrm id{ })

k k mathrm id{ }

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

The 256-bit public key of the account.

Return

A 32-bit unsigned integer indicating the nonce of the account.

C.15. Module TransactionPaymentApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.15.1. TransactionPaymentApi_query_info

Returns information of a given extrinsic. This function is not aware of the internals of an extrinsic, but only interprets the extrinsic as some encoded
value and accounts for its weight and length, the Runtime’s extrinsic base weight, and the current fee multiplier.

This function can be used by the Polkadot Host implementation when it seems appropriate, such as for the JSON-RPC API as described in Section
C.1.1..

Arguments

A byte array of varying sizes containing the extrinsic.

The length of the extrinsic. [To do: why is this needed?]

Return

A data structure of the following format:

where

 is the weight of the extrinsic.

 is the "class" of the extrinsic, where a class is a varying data (Definition 198) type defined as:

 is the inclusion fee of the extrinsic. This does not include a tip or anything else that depends on the signature.

C.15.2. TransactionPaymentApi_query_fee_details

Query the detailed fee of a given extrinsic. This function can be used by the Polkadot Host implementation when it seems appropriate, such as for the
JSON-RPC API as described in Section C.1.1..

Arguments

A byte array of varying sizes containing the extrinsic.

The length of the extrinsic.

Return

A data structure of the following format:

where

 is a SCALE encoded as defined in Definition 200 containing the following data structure:

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

w, c, f()

w

c

c =

⎩
⎨
⎧ 0 Normal extrinsic

1 Operational extrinsic
2 Mandatory extrinsic, which is always included

f

f , t()

f

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

where

 is the minimum required fee for an extrinsic.

 is the length fee, the amount paid for the encoded length (in bytes) of the extrinsic.

 is the “adjusted weight fee,” which is a multiplication of the fee multiplier and the weight fee. The fee multiplier varies depending on the
usage of the network.

 is the tip for the block author.

C.16. Module TransactionPaymentCallApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.16.1. TransactionPaymentCallApi_query_call_info

Query information of a dispatch class, weight, and fee of a given encoded Call .

Arguments

A byte array of varying sizes containing the Call .

The length of the Call.

Return

A data structure of the following format:

where:

 is the weight of the call.

 is the "class" of the call, where a class is a varying data (Definition 198) type defined as:

 is the partial-fee of the call. This does not include a tip or anything else that depends on the signature.

C.16.2. TransactionPaymentCallApi_query_call_fee_details

Query the fee details of a given encoded Call including tip.

Arguments

A byte array of varying sizes containing the Call .

The length of the Call .

Return

A data structure of the following format:

where:

 is a SCALE encoded as defined in Definition 200 containing the following data structure:

f = f ,f ,f (b l a)

f b

f l

f a

t

CAUTION

TODO clarify differences between RuntimeCall and Extrinsics

(w, c, f)

w

c

c =

⎩
⎨
⎧ 0 Normal dispatch

1 Operational dispatch
2 Mandatory dispatch, which is always included regardless of their weight

f

(f , t)

f

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

where:

 is the minimum required fee for the Call .

 is the length fee, the amount paid for the encoded length (in bytes) of the Call .

 is the "adjusted weight fee ", which is a multiplication of the fee multiplier and the weight fee. The fee multiplier varies depending
on the usage of the network.

 is the tip for the block author.

C.17. Module Nomination Pools

C.17.1. NominationPoolsApi_pending_rewards

Runtime API for accessing information about the nomination pools. Returns the pending rewards for the member that the Account ID was given for.

Arguments

The account ID as a SCALE encoded 32-byte address of the sender (Definition 154).

Return

The SCALE encoded balance of type u128 representing the pending reward of the account ID. The default value is Zero in case of errors in
fetching the rewards.

C.17.2. NominationPoolsApi_points_to_balance

Runtime API to convert the number of points to balances given the current pool state, which is often used for unbonding.

Arguments

An unsigned 32-bit integer representing Pool Identifier

An unsigned 32-bit integer Points

Return

An unsigned 32-bit integer Balance

C.17.3. NominationPoolsApi_balance_to_points

Runtime API to convert the given amount of balances to points for the current pool state, which is often used for bonding and issuing new funds in to the
pool.

Arguments

An unsigned 32-bit integer representing Pool Identifier

An unsigned 32-bit integer Balance

Return

An unsigned 32-bit integer Points

f = (f , f , f)b l a

f b

f l

f a

t

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility. Currently supports only one
RPC endpoint.

https://spec.polkadot.network/id-extrinsics#defn-extrinsic-address
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Glossary

A path graph or a path of nodes.

A sequence of bytes or byte array of length

A set of all byte arrays of length

A non-negative integer in base 256

The little-endian representation of a non-negative interger such that

The little-endian encoding function.

A blockchain is defined as a directed path graph.

Block

A node of the directed path graph (blockchain) C

Genesis Block

The unique sink of blockchain C

Head

The source of blockchain C

The parent of block

UNIX time

The number of milliseconds that have elapsed since the Unix epoch as a 64-bit integer

The block tree of a blockchain

The genesis block, the root of the block tree BT

The path graph from to in .

The head of chain C.

The length of chain as a path graph

The subgraph of path graph containing both and .

P n

n

b , b , … , b (0 1 n−1)

n

B n

n

I = B …B (n 0)256

B = b , b , … , b (0 1 n)

I = B …B (n 0)256 b =i : B i

Enc LE

C

P B()

B

BT

G

CHAIN(B)

G B BT

Head C()

C∣ ∣

C

SubChain B ,B(′)

Chain B() B B′

C BTB()

The set of all subchains of rooted at block .

 i.e. the set of all chains of rooted at genesis block

The longest sub path graph of i.e.

The longest sub path graph of with earliest block arrival time

 i.e. the head of

 is a descendant of in the block tree

The function to retrieve the value stored under a specific key in the state storage.

State trie, trie

The Merkle radix-16 Tree, which stores hashes of storage entries.

The function to encode keys for labeling branches of the trie.

The set of all nodes in the Polkadot state trie.

An individual node in the trie.

A branch node of the trie which has at least one and at most 16 children

A childless leaf node of the trie

The aggregated prefix key of node N

The (suffix) partial key of node N

A function returning an integer in range of {0, . . . ,15} representing the index of a child node of node among the children of

Node value containing the header of node , its partial key and the digest of its childern values

The node header of trie node storing information about the node’s type and kay

The Merkle value of node .

The binary function indicates which child of a given node is present in the trie.

BT B

C,C BT()

C BTG() BT

Longest-Chain BT()

BT C : C =∣ ∣ max C C ∈Ci
∣ i∣

Longest-Path BT()

P BT()

Deepest-Leaf BT()

HeadLongest-Path(BT) Longest-Path BT()

B > B′

B B′

StoredValue k()

KeyEncode k()

N

N

N b

N l

pk N
Agr

pk N

Index N

N N

v N

N

Head N

N

H N()

N

ChildrenBitmap

sv N

The subvalue of a trie node .

Child storage

A sub storage of the state storage which has the same structure, although being stored separately

Child trie

State trie of a child storage

Transaction Queue

See Definition 14.

The 32-byte Blake2b hash of the header of the parent of the block.

Block number, the incremental integer index of the current block in the chain.

The hash of the root of the Merkle trie of the state storage at a given block

An auxiliary field in the block header used by Runtime to validate the integrity of the extrinsics composing the block body.

,

A block header used to store any chain-specific auxiliary data.

The hash of the header of block

The body of block consisting of a set of extrinsics

Vote message broadcasted by the voter v as part of the finality protocol

The commit message broadcasted by voter indicating that they have finalized bock in round

GRANDPA voter node, which casts votes in the finality protocol

The private key of voter

The public key of voter

The set of all GRANDPA voters for at block

GRANDPA protocol state consisting of the set of voters, the number of times voters set has changed, and the current round number.

The voting round counter in the finality protocol

A GRANDPA vote casted in favor of block B

N

H p

H ,H Bi i()

H r

H e

H d H Bd()

H Bh()

B

Body B()

B

M v
r,stage

M Bv
r,Fin()

v B r

v

k v
pr

v

v id

v

V ,VB

B

GS

r

V B

V v
r,pv

https://spec.polkadot.network/chap-state#defn-transaction-queue

A GRANDPA vote casted by voter during the pre-vote stage of round

A GRANDPA vote casted by voter during the pre-commit stage of round

The justification for pre-committing or committing to block in round of finality protocol

The signature of voter on their vote to block B, broadcasted during the specified stage of finality round

The set of all equivocator voters in sub-round ‘‘stage'' of round

The set of all equivocator voters in sub-round ‘‘stage'' of round observed by voter

The set of observed direct votes for block B in round

The set of total votes observed by voter v in sub-round ‘‘stage'' of round r

The set of all observed votes by in the sub-round “stage” of round (directly or indirectly) for block

The currently pre-voted block in round . The GRANDPA GHOST of round

Account key,

A key pair of types accepted by the Polkadot protocol which can be used to sign transactions

SCALE encoding of value

A tuple of values 's each of different type

Varying Data Types

A data type representing any of varying types .

Sequence of values of the same type

SCALE length encoding, aka. compact encoding of non-negative interger of arbitrary size.

Hex encoding

v r

V v
r,pc

v r

J Br,stage()

B r

Sign Bv { i}
r,stage()

v r

E r,stage

r

E

obs v{ ()}
r,stage

r v

V D Bobs v{ ()}
r,stage ()

r

V

obs v{ ()}
r,stage

V B
obs v{ ()}
r,stage ()

v r B

B v
r,pv

r r

sk , pk(a a)

Enc ASC()

A

T =: A , … ,A (1 n)

A i

T = T , … ,T { 1 n}

T , … ,T 1 n

S =: A , … ,A 1 n

A i

Enc nSC{ }
Len ()

n

Enc PKHE()

